Abstract
This work investigates the implications of field plate architectures on the power performance of AlGaN/GaN HEMTs at Microwave X – Band. The spread of the output power across the unwanted harmonics is investigated for different field plate lengths and physical insights are drawn on the basis of GaN HEMT’s intrinsic and extrinsic parameters. The analysis is based on DC and RF calibrated simulation decks realized in Silvaco’s Atlas Tool. The comparisons drawn on the basis of POUT at fundamental, second, and third order harmonics reveal the trade – offs between the device breakdown and its linearity and distortion at the RF band.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Trew, R. J., Shin, M. W., Gatto, V.: Wide bandgap semiconductor electronic devices for high frequency applications. In: IEEE Gallium Arsenide Integrated Circuit Symposium, pp. 6–9 (1996). https://doi.org/10.1109/GAAS.1996.567625
Nguyen, C., et al.: GaN HFET technology for RF applications. In: IEEE Gallium Arsenide Integrated Circuits Symposium, cat. no. 00CH37084, pp. 11–14 (2000). https://doi.org/10.1109/GAAS.2000.906263
Bother, K.M., et al.: Improved X-Band performance and reliability of a GaN HEMT with sunken source connected field plate design. IEEE Electron Device Lett. 43(3), 354–357 (2022). https://doi.org/10.1109/LED.2022.3146194
Soni, A., Ajay, Shrivastava, M.: Novel drain-connected field plate GaN HEMT designs for improved VBD–RON tradeoff and RF PA performance. IEEE Trans. Electron Devices. 67(4), 1718–1725 (2020). https://doi.org/10.1109/TED.2020.2976636
Sehra, K., Kumari, V., Gupta, M., Mishra, M., Rawal, D.S., Saxena, M.: A Π-shaped p-GaN HEMT for reliable enhancement mode operation. Microelectron. Reliab. 133(114544), 1–14 (2022). https://doi.org/10.1016/j.microrel.2022.114544
Chen, J., et al.: Decoupling of forward and reverse turn-on threshold voltages in Schottky-type p-GaN gate HEMTs. IEEE Electron Device Lett. 42(7), 986–989 (2021). https://doi.org/10.1109/LED.2021.3077081
Wang, Y., Hu, S., Guo, J., Wu, H., Liu, T., Jiang, J.: Enhancement of breakdown voltage in p-GaN gate AlGaN/GaN HEMTs with a stepped hybrid GaN/AlN buffer layer. IEEE J. Electron Devices Soc. 10, 197–202 (2022). https://doi.org/10.1109/JEDS.2022.3145797
Chen, D., et al.: Microwave performance of ‘buffer-free’ GaN-on-SiC high electron mobility transistors. IEEE Electron Device Lett. 41(6), 828–831 (2020). https://doi.org/10.1109/LED.2020.2988074
Verma, M., Nandi, A.: GaN based trigate HEMT with AlGaN back—barrier layer: proposal and investigation. Semicond. Sci. Technol. 37(6), 1–7 (2022). https://doi.org/10.1088/1361-6641/ac6970
Rey, A.D.L., Albrecht, J.D., Saraniti, M.: A Π-shaped gate design for reducing hot-electron generation in GaN HEMTs. IEEE Trans. Electron Devices 65(10), 4263–4270 (2018). https://doi.org/10.1109/TED.2018.2863746
Wang, M., Chen, K.J.: Off-state breakdown characterization in AlGaN/GaN HEMT using drain injection technique. IEEE Trans. Electron Devices 57(7), 1492–1496 (2010). https://doi.org/10.1109/TED.2010.2048960
Meneghesso, G., Meneghini, M., Zanoni, E.: Breakdown mechanism in AlGaN/GaN HEMTs: an overview. Jpn. J. Appl. Phys. 53(10), 1–8 (2014). https://doi.org/10.7567/JJAP.53.100211
Yang, F., et al.: Study of drain injected breakdown mechanisms in AlGaN/GaN-on-SiC HEMTs. IEEE Trans. Electron Devices 69(2), 525–530 (2022). https://doi.org/10.1109/TED.2021.3138841
Wong, J., et al.: Novel asymmetric slant field plate technology for high-speed low-dynamic Ron E/D-mode GaN HEMTs. IEEE Electron Device Lett. 38(1), 95–98 (2017). https://doi.org/10.1109/LED.2016.2634528
Hasan, M.T., Asano, T., Tokuda, H., Kuzuhara, M.: Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs. IEEE Electron Device Lett. 34(11), 1379–1381 (2013). https://doi.org/10.1109/LED.2013.2280712
Wu, Y.-F., et al.: 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25(3), 117–119 (2004). https://doi.org/10.1109/LED.2003.822667
Brannick, A., Zakhleniuk, N.A., Ridley, B.K., Shealy, J.R., Schaff, W.J., Eastman, L.F.: Influence of field plate on the transient operation of the AlGaN/GaN HEMT. IEEE Electron Device Lett. 30(5), 436–438 (2009). https://doi.org/10.1109/LED.2009.2016680
Saito, Y., Tsurumaki, R., Noda, N., Horio, K.: Analysis of reduction in lag phenomena and current collapse in field-plate AlGaN/GaN HEMTs with high acceptor density in a buffer layer. IEEE Trans. Device Mater. Reliab. 18(1), 46–53 (2018). https://doi.org/10.1109/TDMR.2017.2779429
Saito, W., et al.: Field-plate structure dependence of current collapse phenomena in high-voltage GaN-HEMTs. IEEE Electron Device Lett. 31(7), 659–661 (2010). https://doi.org/10.1109/LED.2010.2048741
Komoto, J., Saito, Y., Tsurumaki, R., Horio, K.: Analysis of slow – current transients or current collapse in AlGaN/GaN HEMTs with field plate and high – k passivation layer. Microelectron. Reliab. 134(114552), 1–9 (2022). https://doi.org/10.1016/j.microrel.2022.114552
Karmalkar, S., Mishra, U.K.: Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Trans. Electron Devices 48(8), 1515–1521 (2001). https://doi.org/10.1109/16.936500
Neha, Kumari, V., Gupta, M., Saxena, M.: TCAD – based optimization of field plate length & passivation layer of AlGaN/GaN HEMT for higher cut – off frequency & breakdown voltage. IETE Tech. Rev. 39(1), 63–71 (2020). https://doi.org/10.1080/02564602.2020.1824624
Neha, Kumari, V., Gupta, M., Saxena, M.: Investigation of proton irradiated dual field plate AlGaN/GaN HEMTs: TCAD based assessment. Microelectron. J. 122(105405), 1–8 (2022). https://doi.org/10.1016/j.mejo.2022.105405
Saito, W., et al.: Suppression of dynamic on-resistance increase and gate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure. IEEE Trans. Electron Devices 54(8), 1825–1830 (2007). https://doi.org/10.1109/TED.2007.901150
Wu, Y.-F., More, M., Wisleder, T., Chavarkar, P.M., Misha, U.K., Parikh, P.: High-gain microwave GaN HEMTs with source-terminated field-plates. In: IEEE International Electron Devices Meeting, pp. 1078–1079 (2004). https://doi.org/10.1109/IEDM.2004.1419386
Saito, W., et al.: High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 50(12), 2528–2531 (2003). https://doi.org/10.1109/TED.2003.819248
Lian, Y.-W., Lin, Y.-S., Lu, H.-C., Huang, Y.-C., Hsu, S.S.H.: AlGaN/GaN HEMTs on silicon with hybrid Schottky-ohmic drain for high breakdown voltage and low leakage current. IEEE Electron Device Lett. 33(7), 973–975 (2012). https://doi.org/10.1109/LED.2012.2197171
Lian, Y.-W., Lin, Y.-S., Lu, H.-C., Huang, Y.-C., Hsu, S.S.H.: Drain E-field manipulation in AlGaN/GaN HEMTs by Schottky extension technology. IEEE Trans. Electron Devices 62(2), 519–524 (2015). https://doi.org/10.1109/TED.2014.2382558
Saito, W., Kuraguchi, M., Takada, Y., Tsuda, K., Omura, I., Ogura, T.: Design optimization of high breakdown voltage AlGaN-GaN power HEMT on an insulating substrate for RONA – VB tradeoff characteristics. IEEE Trans. Electron Devices 52(1), 106–111 (2005). https://doi.org/10.1109/TED.2004.841338
Raja, P.V., Nallatamby, J.-C., Dasgupta, N., Dasgupta, A.: Trapping effects on AlGaN/GaN HEMT characteristics. Solid – State Electron. 176(107929), 1–11 (2021). https://doi.org/10.1016/j.sse.2020.107929
Dambrine, G., Cappy, A., Heliodore, F., Playez, E.: A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microw. Theory Tech. 36(7), 1151–1159 (1988). https://doi.org/10.1109/22.3650
Silvaco Inc.: ATLAS TCAD tool version 5.30.0.R, Santa Clara, CA, USA. www.silvaco.com. Accessed 15 May 2022
Sehra, K., Kumari, V., Gupta, M., Mishra, M., Rawal, D.S., Saxena, M.: Impact of heavy ion particle strike induced single event transients on conventional and π–Gate AlGaN/GaN HEMTs. Semicond. Sci. Technol. 36(3), (035009)1–11 (2021). https://doi.org/10.1088/1361-6641/abdba3
Subramani, N.K., et al.: Low-frequency noise characterization in GaN HEMTs: investigation of deep levels and their physical properties. IEEE Electron Device Lett. 38(8), 1109–1112 (2017). https://doi.org/10.1109/LED.2017.2717539
Ibbetson, J.P., et al.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 70(2), 250–252 (2000). https://doi.org/10.1063/1.126940
Wolfspeed: G28V5 Process Fact Sheet. https://assets.wolfspeed.com/uploads/2020/12/Wolfspeed_G28V5.pdf. Accessed 15 May 2022
Wolfspeed: G50V3 Process Fact Sheet. https://assets.wolfspeed.com/uploads/2020/12/G50V3.pdf. Accessed 15 May 2022
Acknowledgement
The authors would like to acknowledge the Star Scheme Program funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India at DDUC, DU; IASc – NASI SRFP 2021 Reg. No.: ENGS972; and DU IoE Grant Ref. No.: IoE/2021/12/FRP for providing the financial assistance. This work was also supported by Delhi University IoE Grant Ref. No. (IoE-DU/MRP/2022/056); Solid State Physics Laboratory (SSPL) CARS Project No.: 1115/TS/SPL/CARS-95/2022 funded by Defence Research & Development Organization (DRDO); and DST-SERB Project Ref. No.: SPG/2021/00306.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sehra, K., Shibu, J., Mishra, M., Gupta, M., Rawal, D.S., Saxena, M. (2022). Implications of Field Plate HEMT Towards Power Performance at Microwave X - Band. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-21514-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21513-1
Online ISBN: 978-3-031-21514-8
eBook Packages: Computer ScienceComputer Science (R0)