Skip to main content

Implications of Field Plate HEMT Towards Power Performance at Microwave X - Band

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2022)

Abstract

This work investigates the implications of field plate architectures on the power performance of AlGaN/GaN HEMTs at Microwave X – Band. The spread of the output power across the unwanted harmonics is investigated for different field plate lengths and physical insights are drawn on the basis of GaN HEMT’s intrinsic and extrinsic parameters. The analysis is based on DC and RF calibrated simulation decks realized in Silvaco’s Atlas Tool. The comparisons drawn on the basis of POUT at fundamental, second, and third order harmonics reveal the trade – offs between the device breakdown and its linearity and distortion at the RF band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trew, R. J., Shin, M. W., Gatto, V.: Wide bandgap semiconductor electronic devices for high frequency applications. In: IEEE Gallium Arsenide Integrated Circuit Symposium, pp. 6–9 (1996). https://doi.org/10.1109/GAAS.1996.567625

  2. Nguyen, C., et al.: GaN HFET technology for RF applications. In: IEEE Gallium Arsenide Integrated Circuits Symposium, cat. no. 00CH37084, pp. 11–14 (2000). https://doi.org/10.1109/GAAS.2000.906263

  3. Bother, K.M., et al.: Improved X-Band performance and reliability of a GaN HEMT with sunken source connected field plate design. IEEE Electron Device Lett. 43(3), 354–357 (2022). https://doi.org/10.1109/LED.2022.3146194

    Article  Google Scholar 

  4. Soni, A., Ajay, Shrivastava, M.: Novel drain-connected field plate GaN HEMT designs for improved VBD–RON tradeoff and RF PA performance. IEEE Trans. Electron Devices. 67(4), 1718–1725 (2020). https://doi.org/10.1109/TED.2020.2976636

  5. Sehra, K., Kumari, V., Gupta, M., Mishra, M., Rawal, D.S., Saxena, M.: A Π-shaped p-GaN HEMT for reliable enhancement mode operation. Microelectron. Reliab. 133(114544), 1–14 (2022). https://doi.org/10.1016/j.microrel.2022.114544

    Article  Google Scholar 

  6. Chen, J., et al.: Decoupling of forward and reverse turn-on threshold voltages in Schottky-type p-GaN gate HEMTs. IEEE Electron Device Lett. 42(7), 986–989 (2021). https://doi.org/10.1109/LED.2021.3077081

    Article  Google Scholar 

  7. Wang, Y., Hu, S., Guo, J., Wu, H., Liu, T., Jiang, J.: Enhancement of breakdown voltage in p-GaN gate AlGaN/GaN HEMTs with a stepped hybrid GaN/AlN buffer layer. IEEE J. Electron Devices Soc. 10, 197–202 (2022). https://doi.org/10.1109/JEDS.2022.3145797

    Article  Google Scholar 

  8. Chen, D., et al.: Microwave performance of ‘buffer-free’ GaN-on-SiC high electron mobility transistors. IEEE Electron Device Lett. 41(6), 828–831 (2020). https://doi.org/10.1109/LED.2020.2988074

    Article  Google Scholar 

  9. Verma, M., Nandi, A.: GaN based trigate HEMT with AlGaN back—barrier layer: proposal and investigation. Semicond. Sci. Technol. 37(6), 1–7 (2022). https://doi.org/10.1088/1361-6641/ac6970

    Article  Google Scholar 

  10. Rey, A.D.L., Albrecht, J.D., Saraniti, M.: A Π-shaped gate design for reducing hot-electron generation in GaN HEMTs. IEEE Trans. Electron Devices 65(10), 4263–4270 (2018). https://doi.org/10.1109/TED.2018.2863746

    Article  Google Scholar 

  11. Wang, M., Chen, K.J.: Off-state breakdown characterization in AlGaN/GaN HEMT using drain injection technique. IEEE Trans. Electron Devices 57(7), 1492–1496 (2010). https://doi.org/10.1109/TED.2010.2048960

    Article  Google Scholar 

  12. Meneghesso, G., Meneghini, M., Zanoni, E.: Breakdown mechanism in AlGaN/GaN HEMTs: an overview. Jpn. J. Appl. Phys. 53(10), 1–8 (2014). https://doi.org/10.7567/JJAP.53.100211

    Article  Google Scholar 

  13. Yang, F., et al.: Study of drain injected breakdown mechanisms in AlGaN/GaN-on-SiC HEMTs. IEEE Trans. Electron Devices 69(2), 525–530 (2022). https://doi.org/10.1109/TED.2021.3138841

    Article  Google Scholar 

  14. Wong, J., et al.: Novel asymmetric slant field plate technology for high-speed low-dynamic Ron E/D-mode GaN HEMTs. IEEE Electron Device Lett. 38(1), 95–98 (2017). https://doi.org/10.1109/LED.2016.2634528

    Article  Google Scholar 

  15. Hasan, M.T., Asano, T., Tokuda, H., Kuzuhara, M.: Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs. IEEE Electron Device Lett. 34(11), 1379–1381 (2013). https://doi.org/10.1109/LED.2013.2280712

    Article  Google Scholar 

  16. Wu, Y.-F., et al.: 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25(3), 117–119 (2004). https://doi.org/10.1109/LED.2003.822667

  17. Brannick, A., Zakhleniuk, N.A., Ridley, B.K., Shealy, J.R., Schaff, W.J., Eastman, L.F.: Influence of field plate on the transient operation of the AlGaN/GaN HEMT. IEEE Electron Device Lett. 30(5), 436–438 (2009). https://doi.org/10.1109/LED.2009.2016680

    Article  Google Scholar 

  18. Saito, Y., Tsurumaki, R., Noda, N., Horio, K.: Analysis of reduction in lag phenomena and current collapse in field-plate AlGaN/GaN HEMTs with high acceptor density in a buffer layer. IEEE Trans. Device Mater. Reliab. 18(1), 46–53 (2018). https://doi.org/10.1109/TDMR.2017.2779429

    Article  Google Scholar 

  19. Saito, W., et al.: Field-plate structure dependence of current collapse phenomena in high-voltage GaN-HEMTs. IEEE Electron Device Lett. 31(7), 659–661 (2010). https://doi.org/10.1109/LED.2010.2048741

    Article  Google Scholar 

  20. Komoto, J., Saito, Y., Tsurumaki, R., Horio, K.: Analysis of slow – current transients or current collapse in AlGaN/GaN HEMTs with field plate and high – k passivation layer. Microelectron. Reliab. 134(114552), 1–9 (2022). https://doi.org/10.1016/j.microrel.2022.114552

    Article  Google Scholar 

  21. Karmalkar, S., Mishra, U.K.: Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Trans. Electron Devices 48(8), 1515–1521 (2001). https://doi.org/10.1109/16.936500

    Article  Google Scholar 

  22. Neha, Kumari, V., Gupta, M., Saxena, M.: TCAD – based optimization of field plate length & passivation layer of AlGaN/GaN HEMT for higher cut – off frequency & breakdown voltage. IETE Tech. Rev. 39(1), 63–71 (2020). https://doi.org/10.1080/02564602.2020.1824624

  23. Neha, Kumari, V., Gupta, M., Saxena, M.: Investigation of proton irradiated dual field plate AlGaN/GaN HEMTs: TCAD based assessment. Microelectron. J. 122(105405), 1–8 (2022). https://doi.org/10.1016/j.mejo.2022.105405

  24. Saito, W., et al.: Suppression of dynamic on-resistance increase and gate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure. IEEE Trans. Electron Devices 54(8), 1825–1830 (2007). https://doi.org/10.1109/TED.2007.901150

    Article  Google Scholar 

  25. Wu, Y.-F., More, M., Wisleder, T., Chavarkar, P.M., Misha, U.K., Parikh, P.: High-gain microwave GaN HEMTs with source-terminated field-plates. In: IEEE International Electron Devices Meeting, pp. 1078–1079 (2004). https://doi.org/10.1109/IEDM.2004.1419386

  26. Saito, W., et al.: High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 50(12), 2528–2531 (2003). https://doi.org/10.1109/TED.2003.819248

    Article  Google Scholar 

  27. Lian, Y.-W., Lin, Y.-S., Lu, H.-C., Huang, Y.-C., Hsu, S.S.H.: AlGaN/GaN HEMTs on silicon with hybrid Schottky-ohmic drain for high breakdown voltage and low leakage current. IEEE Electron Device Lett. 33(7), 973–975 (2012). https://doi.org/10.1109/LED.2012.2197171

    Article  Google Scholar 

  28. Lian, Y.-W., Lin, Y.-S., Lu, H.-C., Huang, Y.-C., Hsu, S.S.H.: Drain E-field manipulation in AlGaN/GaN HEMTs by Schottky extension technology. IEEE Trans. Electron Devices 62(2), 519–524 (2015). https://doi.org/10.1109/TED.2014.2382558

    Article  Google Scholar 

  29. Saito, W., Kuraguchi, M., Takada, Y., Tsuda, K., Omura, I., Ogura, T.: Design optimization of high breakdown voltage AlGaN-GaN power HEMT on an insulating substrate for RONA – VB tradeoff characteristics. IEEE Trans. Electron Devices 52(1), 106–111 (2005). https://doi.org/10.1109/TED.2004.841338

    Article  Google Scholar 

  30. Raja, P.V., Nallatamby, J.-C., Dasgupta, N., Dasgupta, A.: Trapping effects on AlGaN/GaN HEMT characteristics. Solid – State Electron. 176(107929), 1–11 (2021). https://doi.org/10.1016/j.sse.2020.107929

  31. Dambrine, G., Cappy, A., Heliodore, F., Playez, E.: A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microw. Theory Tech. 36(7), 1151–1159 (1988). https://doi.org/10.1109/22.3650

    Article  Google Scholar 

  32. Silvaco Inc.: ATLAS TCAD tool version 5.30.0.R, Santa Clara, CA, USA. www.silvaco.com. Accessed 15 May 2022

  33. Sehra, K., Kumari, V., Gupta, M., Mishra, M., Rawal, D.S., Saxena, M.: Impact of heavy ion particle strike induced single event transients on conventional and π–Gate AlGaN/GaN HEMTs. Semicond. Sci. Technol. 36(3), (035009)1–11 (2021). https://doi.org/10.1088/1361-6641/abdba3

  34. Subramani, N.K., et al.: Low-frequency noise characterization in GaN HEMTs: investigation of deep levels and their physical properties. IEEE Electron Device Lett. 38(8), 1109–1112 (2017). https://doi.org/10.1109/LED.2017.2717539

    Article  Google Scholar 

  35. Ibbetson, J.P., et al.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 70(2), 250–252 (2000). https://doi.org/10.1063/1.126940

    Article  Google Scholar 

  36. Wolfspeed: G28V5 Process Fact Sheet. https://assets.wolfspeed.com/uploads/2020/12/Wolfspeed_G28V5.pdf. Accessed 15 May 2022

  37. Wolfspeed: G50V3 Process Fact Sheet. https://assets.wolfspeed.com/uploads/2020/12/G50V3.pdf. Accessed 15 May 2022

Download references

Acknowledgement

The authors would like to acknowledge the Star Scheme Program funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India at DDUC, DU; IASc – NASI SRFP 2021 Reg. No.: ENGS972; and DU IoE Grant Ref. No.: IoE/2021/12/FRP for providing the financial assistance. This work was also supported by Delhi University IoE Grant Ref. No. (IoE-DU/MRP/2022/056); Solid State Physics Laboratory (SSPL) CARS Project No.: 1115/TS/SPL/CARS-95/2022 funded by Defence Research & Development Organization (DRDO); and DST-SERB Project Ref. No.: SPG/2021/00306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sehra, K., Shibu, J., Mishra, M., Gupta, M., Rawal, D.S., Saxena, M. (2022). Implications of Field Plate HEMT Towards Power Performance at Microwave X - Band. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21514-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21513-1

  • Online ISBN: 978-3-031-21514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy