Skip to main content

PAI3D: Painting Adaptive Instance-Prior for 3D Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

  • 2057 Accesses

Abstract

3D object detection is a critical task in autonomous driving. Recently multi-modal fusion-based 3D object detection methods, which combine the complementary advantages of LiDAR and camera, have shown great performance improvements over mono-modal methods. However, so far, no methods have attempted to utilize the instance-level contextual image semantics to guide the 3D object detection. In this paper, we propose a simple and effective Painting Adaptive Instance-prior for 3D object detection (PAI3D) to fuse instance-level image semantics flexibly with point cloud features. PAI3D is a multi-modal sequential instance-level fusion framework. It first extracts instance-level semantic information from images, the extracted information, including objects categorical label, point-to-object membership and object position, are then used to augment each LiDAR point in the subsequent 3D detection network to guide and improve detection performance. PAI3D outperforms the state-of-the-art with a large margin on the nuScenes dataset, achieving 71.4 in mAP and 74.2 in NDS on the test split. Our comprehensive experiments show that instance-level image semantics contribute the most to the performance gain, and PAI3D works well with any good-quality instance segmentation models and any modern point cloud 3D encoders, making it a strong candidate for deployment on autonomous vehicles.

The authors share equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We directly use the checkpoint (trained on nuImage [1]) provided by MMDetection3D [9] without making any modifications.

  2. 2.

    Reproduced with the latest code from the CenterPoint’s official GitHub repository: https://github.com/tianweiy/CenterPoint).

References

  1. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2019)

    Article  Google Scholar 

  3. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  4. Chen, Q., Sun, L., Cheung, E., Yuille, A.L.: Every view counts: cross-view consistency in 3D object detection with hybrid-cylindrical-spherical voxelization. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  5. Chen, Q., Sun, L., Wang, Z., Jia, K., Yuille, A.: Object as hotspots: an anchor-free 3D object detection approach via firing of hotspots. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 68–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_5

    Chapter  Google Scholar 

  6. Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13039–13048 (2021)

    Google Scholar 

  7. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)

    Google Scholar 

  8. Chen, Y., Tai, L., Sun, K., Li, M.: MonoPair: monocular 3D object detection using pairwise spatial relationships. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12093–12102 (2020)

    Google Scholar 

  9. Contributors, M.: MMDetection3D: OpenMMLab next-generation platform for general 3D object detection (2020). https://github.com/open-mmlab/mmdetection3d

  10. Ding, Z., et al.: 1st place solution for Waymo open dataset challenge-3D detection and domain adaptation. arXiv preprint arXiv:2006.15505 (2020)

  11. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  13. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  14. Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: RangeDet: in defense of range view for lidar-based 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2918–2927 (2021)

    Google Scholar 

  15. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

    Google Scholar 

  16. He, C., Zeng, H., Huang, J., Hua, X.S., Zhang, L.: Structure aware single-stage 3D object detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11873–11882 (2020)

    Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  18. He, Y., et al.: MR-DBSCAN: an efficient parallel density-based clustering algorithm using MapReduce. In: 2011 IEEE 17th International Conference on Parallel and Distributed Systems, pp. 473–480. IEEE (2011)

    Google Scholar 

  19. Hu, P., Ziglar, J., Held, D., Ramanan, D.: What you see is what you get: exploiting visibility for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11001–11009 (2020)

    Google Scholar 

  20. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6399–6408 (2019)

    Google Scholar 

  21. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  22. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  23. Liang, Z., Zhang, Z., Zhang, M., Zhao, X., Pu, S.: RangeIoUDet: range image based real-time 3D object detector optimized by intersection over union. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7140–7149 (2021)

    Google Scholar 

  24. Liu, H., Oyama, S., Kurihara, M., Sato, H.: Landmark FN-DBSCAN: an efficient density-based clustering algorithm with fuzzy neighborhood. J. Adv. Comput. Intell. 17(1), 60–73 (2013)

    Google Scholar 

  25. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  26. Liu, Z., Wu, Z., Tóth, R.: Smoke: single-stage monocular 3D object detection via keypoint estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 996–997 (2020)

    Google Scholar 

  27. Paigwar, A., Sierra-Gonzalez, D., Erkent, Ö., Laugier, C.: Frustum-PointPillars: a multi-stage approach for 3D object detection using RGB camera and lidar. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2926–2933 (2021)

    Google Scholar 

  28. Park, J., Weng, X., Man, Y., Kitani, K.: Multi-modality task cascade for 3D object detection. arXiv preprint arXiv:2107.04013 (2021)

  29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  30. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

    Google Scholar 

  31. Simon, M., Milz, S., Amende, K., Gross, H.-M.: Complex-YOLO: an Euler-region-proposal for real-time 3D object detection on point clouds. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 197–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_11

    Chapter  Google Scholar 

  32. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  33. Sun, P., et al.: RSN: range sparse net for efficient, accurate lidar 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5725–5734 (2021)

    Google Scholar 

  34. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  35. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4604–4612 (2020)

    Google Scholar 

  36. Wang, C., Ma, C., Zhu, M., Yang, X.: PointAugmenting: cross-modal augmentation for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11794–11803 (2021)

    Google Scholar 

  37. Wang, T., Zhu, X., Pang, J., Lin, D.: FCOS3D: fully convolutional one-stage monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 913–922 (2021)

    Google Scholar 

  38. Xu, S., Zhou, D., Fang, J., Yin, J., Bin, Z., Zhang, L.: FusionPainting: multimodal fusion with adaptive attention for 3D object detection. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3047–3054. IEEE (2021)

    Google Scholar 

  39. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  40. Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3D object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)

    Google Scholar 

  41. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11040–11048 (2020)

    Google Scholar 

  42. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: IPOD: intensive point-based object detector for point cloud. arXiv preprint arXiv:1812.05276 (2018)

  43. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector for point cloud. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1951–1960 (2019)

    Google Scholar 

  44. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793 (2021)

    Google Scholar 

  45. Yin, T., Zhou, X., Krähenbühl, P.: Multimodal virtual point 3D detection. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  46. Yoo, J.H., Kim, Y., Kim, J., Choi, J.W.: 3D-CVF: generating joint camera and LiDAR features using cross-view spatial feature fusion for 3D object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 720–736. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_43

    Chapter  Google Scholar 

  47. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  48. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3D object detection. arXiv preprint arXiv:1908.09492 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H. et al. (2023). PAI3D: Painting Adaptive Instance-Prior for 3D Object Detection. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy