Abstract
Cost-containment and efficiency are aspects that have more and more weight in the evaluation of the performance of healthcare facilities. This trend, coupled with the ever-rising complexity of the services and quality standards, has called for a great attention to the rationalization of resources. Our aim is to predict the Length Of Stay (LOS) by investigating several variabilities both intrinsic (i.e. age, comorbidities) and extrinsic (i.e. complications, pre-operative LOS) to the patient and have great impact on the economic expenditure. Therefore, healthcare facilities are in dire need of new tools to know a priori patient’s needs. This study has the purpose to design and compare different Artificial Intelligence (AI) models for predicting the subject’s LOS under appendectomy. In particular, the AI model has been designed in a previous work using data extracted from an Italian hospital, the University Hospital “San Giovanni di Dio e Ruggi d’Aragona” of Salerno through Multiple Linear Regression. In this paper the results were compared with a similar sample from the AORN “Antonio Cardarelli” of Napoli to evaluate its efficacy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

References
Graffeo, C.S., Counselman, F.L.: Appendicitis. Emerg. Med. Clin. North Am. 14(4), 653–671 (1996). https://doi.org/10.1016/S0733-8627(05)70273-X
Hori, T., et al.: Laparoscopic appendectomy for acute appendicitis: how to discourage surgeons using inadequate therapy. World J. Gastroenterol. 23(32), 5849–5859 (2017). https://doi.org/10.3748/wjg.v23.i32.5849
Wilms, I.M.H.A., de Hoog, D.E.N.M., de Visser, D.C., Janzing, H.M.J.: Appendectomy versus antibiotic treatment for acute appendicitis. Cochrane Database Syst. Rev. 11, CD008359 (2011). https://doi.org/10.1002/14651858.CD008359.pub2
Anderson, J.E., Bickler, S.W., Chang, D.C., Talamini, M.A.: Examining a common disease with unknown etiology: trends in epidemiology and surgical management of appendicitis in California, 1995–2009. World J. Surg. 36(12), 2787–2794 (2012). https://doi.org/10.1007/s00268-012-1749-z
Di Saverio, S., et al.: The NOTA study (Non Operative Treatment for Acute Appendicitis): prospective study on the efficacy and safety of antibiotics (amoxicillin and clavulanic acid) for treating patients with right lower quadrant abdominal pain and long-term follow-up of conservatively treated suspected appendicitis. Ann. Surg. 260(1), 109–117 (2014). https://doi.org/10.1097/SLA.0000000000000560
Addiss, D.G., Shaffer, N., Fowler, B.S., Tauxev, R.: The epidemiology of appendicitis and appendectomy in the United States. Am. J. Epidemiol. 132(5), 910–925 (1990). https://doi.org/10.1093/oxfordjournals.aje.a115734
Buckius, M.T., McGrath, B., Monk, J., Grim, R., Bell, T., Ahuja, V.: Changing epidemiology of acute appendicitis in the United States: study period 1993–2008. J. Surg. Res. 175(2), 185–190 (2012). https://doi.org/10.1016/j.jss.2011.07.017
Simillis, C., Symeonides, P., Shorthouse, A.J., Tekkis, P.P.: A meta-analysis comparing conservative treatment versus acute appendectomy for complicated appendicitis (abscess or phlegmon). Surgery 147(6), 818–829 (2010). https://doi.org/10.1016/j.surg.2009.11.013
Andersen, B.R., Kallehave, F.L., Andersen, H.K.: Antibiotics versus placebo for prevention of postoperative infection after appendicectomy. Cochrane Database Syst. Rev. 3, CD001439 (2005). https://doi.org/10.1002/14651858.CD001439.pub2
Hall, M.J., DeFrances, C.J., Williams, S.N., Golosinskiy, A., Schwartzman, A.: National hospital discharge survey: 2007 summary. Natl. Health Stat. Rep. 29(1–20), 24 (2010)
Cheng, Y., Xiong, X.Z., Wu, S.J., Lin, Y.X., Cheng, N.S.: Laparoscopic vs open cholecystectomy for cirrhotic patients: a systematic review and meta-analysis. Hepato-Gastroenterology 59(118), 1727–1734 (2012). https://doi.org/10.5754/hge11688
Prystowsky, J.B., Pugh, C.M., Nagle, A.P.: Current problems in surgery appendicitis. Curr. Probl. Surg. 42(10), 688–742 (2005). https://doi.org/10.1067/j.cpsurg.2005.07.005
Semm, K.: Endoscopic appendectomy. Endoscopy 15(2), 59–64 (1983). https://doi.org/10.1055/s-2007-1021466
Biondi, A., di Stefano, C., Ferrara, F., Bellia, A., Vacante, M., Piazza, L.: Laparoscopic versus open appendectomy: a retrospective cohort study assessing outcomes and cost-effectiveness. World J. Emerg. Surgery : WJES 11(1), 44 (2016). https://doi.org/10.1186/s13017-016-0102-5
Gonçalves-Bradley, D.C., Lannin, N.A., Clemson, L.M., Cameron, I.D., Shepperd, S.: Discharge planning from hospital. Cochrane Database Syst. Rev. 1, CD000313 (2016). https://doi.org/10.1002/14651858.CD000313.pub5
Trunfio, A.T., Scala, A., Borrelli, A., Sparano, M., Triassi, M., Improta, G.: Application of the lean six sigma approach to the study of the LOS of patients who undergo laparoscopic cholecystectomy at the San Giovanni di Dio and Ruggi d’Aragona University Hospital. In: 2021 5th International Conference on Medical and Health Informatics (ICMHI), pp. 50–54. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3472813.3472823
Giovanni, I., Pasquale, N., Carmela, S.L., Maria, T.: Health worker monitoring: Kalman-based software design for fault isolation in human breathing. In: EMSS Proceedings (2014)
Rosa, D., Balato, G., Ciaramella, G., Soscia, E., Improta, G., Triassi, M.: Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients. J. Orthop. Traumatol. 17(1), 55–62 (2015). https://doi.org/10.1007/s10195-015-0383-6
Raiola, E., et al.: Implementation of lean practices to reduce healthcare associated infections. Int. J. Healthc. Technol. Manag. 18, 51 (2020). https://doi.org/10.1504/IJHTM.2020.10039887
Improta, G., Simone, T., Bracale, M.: HTA (Health Technology Assessment): a means to reach governance goals and to guide health politics on the topic of clinical Risk management. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering, Munich, Germany. IFMBE Proceedings, vol. 25, pp. 166–169. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03893-8_47
Ponsiglione, A.M., Cosentino, C., Cesarelli, G., Amato, F., Romano, M.: A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors 21(18), 6136 (2021)
Ponsiglione, A.M., Amato, F., Romano, M.: Multiparametric investigation of dynamics in fetal heart rate signals. Bioengineering 9(1), 8 (2021)
Improta, G., Mazzella, V., Vecchione, D., Santini, S., Triassi, M.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-transplant patients. J. Eval. Clin. Pract. 26(4), 1224–1234 (2020)
Santini, S., et al.: Using fuzzy logic for improving clinical daily-care of β-thalassemia patients. In: Fuzzy Systems (FUZZ-IEEE), 2017 IEEE International Conference, pp. 1–6. IEEE (2017)
Converso, Giuseppe, Improta, Giovanni, Mignano, Manuela, Santillo, Liberatina C.: A simulation approach for agile production logic implementation in a hospital emergency unit. In: Fujita, Hamido, Guizzi, Guido (eds.) SoMeT 2015. CCIS, vol. 532, pp. 623–634. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_48
Ponsiglione, A.M., Romano, M., Amato, F.: A finite-state machine approach to study patients dropout from medical examinations. In: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), pp. 289–294 (2021). https://doi.org/10.1109/RTSI50628.2021.9597264
Moscato, V., Picariello, A., Sperlí, G.: A benchmark of machine learning approaches for credit score prediction. Expert Syst. Appl. 165, 113986 (2021). https://doi.org/10.1016/j.eswa.2020.113986
Sperlí, G.: A deep learning based community detection approach. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 1107–1110 (2019). https://doi.org/10.1145/3297280.3297574
De Santo, A., Galli, A., Gravina, M., Moscato, V., Sperlì, G.: Deep learning for HDD health assessment: an application based on LSTM. IEEE Trans. Comput. 71(1), 69–80 (2020). https://doi.org/10.1109/TC.2020.3042053
La Gatta, V., Moscato, V., Pennone, M., Postiglione, M., Sperlí, G.: Music recommendation via hypergraph embedding. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146968
Han, Q., Molinaro, C., Picariello, A., Sperli, G., Subrahmanian, V.S., Xiong, Y.: Generating fake documents using probabilistic logic graphs. IEEE Trans. Dependable Secure Comput. (2021). https://doi.org/10.1109/TDSC.2021.3058994
Mercorio, F., Mezzanzanica, M., Moscato, V., Picariello, A., Sperlí, G.: DICO: a graph-DB framework for community detection on big scholarly data. IEEE Trans. Emerg. Top. Comput. 9(4), 1987–2003 (2021). https://doi.org/10.1109/TETC.2019.2952765
Petrillo, A., Picariello, A., Santini, S., Scarciello, B., Sperli, G.: Model-based vehicular prognostics framework using big data architecture. Comput. Ind. 115, 103177 (2020). https://doi.org/10.1016/j.compind.2019.103177
Di Girolamo, R., Esposito, C., Moscato, V., Sperlí, G.: Evolutionary game theoretical on-line event detection over tweet streams. Knowl. Based Syst. 211, 106563 (2021). https://doi.org/10.1016/j.knosys.2020.106563
Amato, A., Cozzolino, G., Ferraro, A.: A smart interface for provisioning of food and health advices. In: Barolli, L., Takizawa, M., Yoshihisa, T., Amato, F., Ikeda, M. (eds.) 3PGCIC 2020. LNNS, vol. 158, pp. 241–250. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61105-7_24
Baek, H., Cho, M., Kim, S., Hwang, H., Song, M., Yoo, S.: Analysis of length of hospital stay using electronic health records: a statistical and data mining approach. PLoS ONE 13(4), e0195901 (2018). https://doi.org/10.1371/journal.pone.0195901
Angela Trunfio, T., et al.: Modelling the hospital length of stay for patients undergoing laparoscopic appendectomy through a multiple regression model. Int. Symp. Biomed. Eng. Comput. Bio. 2021, 1–5 (2021). https://doi.org/10.1145/3502060.3503644
Scala, A., Trunfio, T.A., Borrelli, A., Ferrucci, G., Triassi, M., Improta, G.: Modelling the hospital length of stay for patients undergoing laparoscopic cholecystectomy through a multiple regression model. In: 2021 5th International Conference on Medical and Health Informatics (ICMHI 2021), pp. 68–72. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3472813.3472826
Trunfio, T.A., et al.: A comparison of different regression and classification methods for predicting the length of hospital stay after cesarean sections. In: 2021 5th International Conference on Medical and Health Informatics (2021)
Maria Ponsiglione, A., et al.: Modeling the variation in length of stay for appendectomy and cholecystectomy interventions in the emergency general surgery. In: 2021 International Symposium on Biomedical Engineering and Computational Biology (2021)
Turgeman, L., May, J.H., Sciulli, R.: Insights from a machine learning model for predicting the hospital Length of Stay (LOS) at the time of admission. Expert Syst. Appl. 78, 376–385 (2017). https://doi.org/10.1016/j.eswa.2017.02.023
Scala, A., Loperto, I., Carrano, R., Federico, S., Triassi, M., Improta, G.: Assessment of proteinuria level in nephrology patients using a machine learning approach. In: 2021 5th International Conference on Medical and Health Informatics (ICMHI 2021), p. 13–16. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3472813.3472816
Scala, A., et al.: A comparison of different machine learning algorithms for predicting the length of hospital stay for patients undergoing cataract surgery. In: 2021 International Symposium on Biomedical Engineering and Computational Biology (2021)
Arianna, S., et al.: Regression models to study the total LOS related to valvuloplasty. Int. J. Environ. Res. Public Health 19(5), 3117 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Montella, E. et al. (2023). Multiple Regression Model to Analyze the Length of Stay for Patients Undergoing Laparoscopic Appendectomy: A Bicentric Study. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-25191-7_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25190-0
Online ISBN: 978-3-031-25191-7
eBook Packages: Computer ScienceComputer Science (R0)