Skip to main content

Graph Networks as Inductive Bias for Genetic Programming: Symbolic Models for Particle-Laden Flows

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2023)

Abstract

High-resolution simulations of particle-laden flows are computationally limited to a scale of thousands of particles due to the complex interactions between particles and fluid. Some approaches to increase the number of particles in such simulations require information about the fluid-induced force on a particle, which is a major challenge in this research area. In this paper, we present an approach to develop symbolic models for the fluid-induced force. We use a graph network as inductive bias to model the underlying pairwise particle interactions. The internal parts of the network are then replaced by symbolic models using a genetic programming algorithm. We include prior problem knowledge in our algorithm. The resulting equations show an accuracy in the same order of magnitude as state-of-the-art approaches for different benchmark datasets. They are interpretable and deliver important building blocks. Our approach is a promising alternative to “black-box” models from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiki, G., Moore, W., Balachandar, S.: Pairwise-interaction extended point-particle model for particle-laden flows. J. Comput. Phys. 351, 329–357 (2017)

    Article  MathSciNet  Google Scholar 

  2. Anderson, T.B., Jackson, R.O.Y.: A fluid mechanical description of fluidized beds. I EC Fundam. 6(4), 524–539 (1967)

    Article  Google Scholar 

  3. Balachandar, S., Moore, W.C., Akiki, G., Liu, K.: Toward particle-resolved accuracy in Euler-Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation. Theoret. Comput. Fluid Dyn. 34(4), 401–428 (2020)

    Article  MathSciNet  Google Scholar 

  4. Beetham, S., Capecelatro, J.: Multiphase turbulence modeling using sparse regression and gene expression programming (2021). https://arxiv.org/abs/2106.10397

  5. Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic regression that scales. In: International Conference on Machine Learning, pp. 936–945 (2021)

    Google Scholar 

  6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  7. Capecelatro, J., Desjardins, O.: An Euler-Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 1–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cortez, R.: The method of regularized stokeslets. SIAM J. Sci. Comput. 23(4), 1204–1225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cranmer, M.: Pysr: Fast & parallelized symbolic regression in python/julia (2020). https://doi.org/10.5281/zenodo.4041459

  10. Cranmer, M., et al.: Discovering symbolic models from deep learning with inductive biases. In: NeurIPS 2020 (2020)

    Google Scholar 

  11. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428 (2019)

  12. Kaptanoglu, A.A., et al.: PySINDy: a comprehensive python package for robust sparse system identification. J. Open Source Softw. 7(69), 3994 (2022)

    Article  Google Scholar 

  13. Keijzer, M., Babovic, V.: Dimensionally aware genetic programming. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1069–1076 (1999)

    Google Scholar 

  14. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’neill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–396 (2010). https://doi.org/10.1007/s10710-010-9109-y

  15. Moore, W.C., Balachandar, S.: Lagrangian investigation of pseudo-turbulence in multiphase flow using superposable wakes. Phys. Rev. Fluids 4, 114301 (2019)

    Article  Google Scholar 

  16. Moore, W., Balachandar, S., Akiki, G.: A hybrid point-particle force model that combines physical and data-driven approaches. J. Comput. Phys. 385, 187–208 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rackauckas, C., et al.: Universal differential equations for scientific machine learning (2020). https://doi.org/10.48550/arXiv.2001.04385v4

    Google Scholar 

  18. Ratle, A., Sebag, M.: Grammar-guided genetic programming and dimensional consistency: application to non-parametric identification in mechanics. Appl. Soft Comput. 1(1), 105–118 (2001)

    Article  Google Scholar 

  19. Reuter, J., Cendrollu, M., Evrard, F., Mostaghim, S., van Wachem, B.: Towards improving simulations of flows around spherical particles using genetic programming. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2022)

    Google Scholar 

  20. Richardson, J.F., Zaki, W.N.: The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 3(2), 65–73 (1954)

    Article  Google Scholar 

  21. Ross, A.S., Li, Z., Perezhogin, P., Fernandez-Granda, C., Zanna, L.: Benchmarking of machine learning ocean subgrid parameterizations in an idealized model. In: Earth and Space Science Open Archive, p. 43 (2022)

    Google Scholar 

  22. Schiller, L., Naumann, A.: über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Zeitschrift des Vereines Deutscher Ingenieure 77, 318–320 (1933)

    Google Scholar 

  23. Schneiders, L., Meinke, M., Schröder, W.: Direct particle–fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188–227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Seyed-Ahmadi, A., Wachs, A.: Microstructure-informed probability-driven point-particle model for hydrodynamic forces and torques in particle-laden flows. J. Fluid Mech. 900, A21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seyed-Ahmadi, A., Wachs, A.: Physics-inspired architecture for neural network modeling of forces and torques in particle-laden flows. Comput. Fluids 238, 105379 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tenneti, S., Garg, R., Subramaniam, S.: Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiph. Flow 37(9), 1072–1092 (2011)

    Article  Google Scholar 

  27. Udrescu, S.M., Tegmark, M.: AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6(16), eaay2631 (2020)

    Google Scholar 

  28. Uhlmann, M., Chouippe, A.: Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence. J. Fluid Mech. 812, 991–1023 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software using strongly-typed genetic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, p. 1925–1932 (2006)

    Google Scholar 

  30. Werner, M., Junginger, A., Hennig, P., Martius, G.: Informed equation learning. arXiv preprint arXiv:2105.06331 (2021)

  31. Zille, H., Evrard, F., Reuter, J., Mostaghim, S., van Wachem, B.: Assessment of multi-objective and coevolutionary genetic programming for predicting the stokes flow around a sphere. In: 14th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Reuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reuter, J., Elmestikawy, H., Evrard, F., Mostaghim, S., van Wachem, B. (2023). Graph Networks as Inductive Bias for Genetic Programming: Symbolic Models for Particle-Laden Flows. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds) Genetic Programming. EuroGP 2023. Lecture Notes in Computer Science, vol 13986. Springer, Cham. https://doi.org/10.1007/978-3-031-29573-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29573-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29572-0

  • Online ISBN: 978-3-031-29573-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy