Skip to main content

Graph Laplacian and Neural Networks for Inverse Problems in Imaging: GraphLaNet

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

  • 1471 Accesses

Abstract

In imaging problems, the graph Laplacian is proven to be a very effective regularization operator when a good approximation of the image to restore is available. In this paper, we study a Tikhonov method that embeds the graph Laplacian operator in a \(\ell _1\)–norm penalty term. The novelty is that the graph Laplacian is built upon a first approximation of the solution obtained as the output of a trained neural network. Numerical examples in 2D computerized tomography demonstrate the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ao, W., Li, W., Qian, J.: A data and knowledge driven approach for SPECT using convolutional neural networks and iterative algorithms. J. Inverse Ill-Posed Probl. 29(4), 543–555 (2021). https://doi.org/10.1515/jiip-2020-0056

    Article  MathSciNet  MATH  Google Scholar 

  2. Bianchi, D., Buccini, A., Donatelli, M., Randazzo, E.: Graph Laplacian for image deblurring. ETNA 55, 169–186 (2022). https://doi.org/10.1553/etna_vol55s169

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchi, D., Lai, G., Li, W.: Uniformly convex neural networks and non-stationary iterated network Tikhonov (iNETT) method. Inverse Prob. (2023). https://doi.org/10.1088/1361-6420/acc2b6

    Article  MathSciNet  MATH  Google Scholar 

  4. Buccini, A., Donatelli, M.: Graph Laplacian in \(\ell ^{2}-\ell ^{q}\) regularization for image reconstruction. In: 2021 21st International Conference on Computational Science and Its Applications (ICCSA), pp. 29–38. IEEE (2021). https://doi.org/10.1109/ICCSA54496.2021.00015

  5. Calatroni, L., van Gennip, Y., Schönlieb, C.-B., Rowland, H.M., Flenner, A.: Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images. J. Math. Imaging Vision 57(2), 269–291 (2016). https://doi.org/10.1007/s10851-016-0678-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Evangelista, D., Morotti, E., Loli Piccolomini, E.: COULE dataset (2021). https://www.kaggle.com/datasets/loiboresearchgroup/coule-dataset

  7. Evangelista, D., Morotti, E., Piccolomini, E.L.: RISING: a new framework for model-based few-view CT image reconstruction with deep learning. Comput. Med. Imaging Graph. 103, 102156 (2023). https://doi.org/10.1016/j.compmedimag.2022.102156

    Article  Google Scholar 

  8. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009). https://doi.org/10.1137/070698592

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, P.C.: Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. In: SIAM (1998)

    Google Scholar 

  10. Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring images: matrices, spectra, and filtering. In: SIAM (2006)

    Google Scholar 

  11. Keller, M., Lenz, D., Wojciechowski, R.K.: Graphs and Discrete Dirichlet Spaces. Grundlehren der mathematischen Wissenschaften. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81459-5

  12. Kingma, D.P., Ba, J.: Adam: a method for Stochastic Optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

  13. Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural networks. Inverse Probl. 36(6), 065005 (2020). https://doi.org/10.1088/1361-6420/ab6d57

    Article  MathSciNet  MATH  Google Scholar 

  14. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 57–68. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_5

    Chapter  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging, 1st edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-69277-7

    Book  MATH  Google Scholar 

  17. Tewodrose, D.: A survey on spectral embeddings and their application in data analysis. Séminaire de théorie spectrale et géométrie 35, 197–244 (2021). https://doi.org/10.5802/tsg.369

    Article  MATH  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank the authors of [6] to share the dataset and the authors of [4] to share the code. Davide Bianchi is supported by NSFC (grant no. 12250410253). Wenbin Li is supported by Natural Science Foundation of Shenzhen (grant no. JCYJ20190806144005645) and NSFC (grant no. 41804096). Marco Donatelli is partially supported by GNCS (project 2022 “Tecniche numeriche per lo studio dei problemi inversi e l’analisi delle reti complesse”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bianchi, D., Donatelli, M., Evangelista, D., Li, W., Piccolomini, E.L. (2023). Graph Laplacian and Neural Networks for Inverse Problems in Imaging: GraphLaNet. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy