Abstract
In imaging problems, the graph Laplacian is proven to be a very effective regularization operator when a good approximation of the image to restore is available. In this paper, we study a Tikhonov method that embeds the graph Laplacian operator in a \(\ell _1\)–norm penalty term. The novelty is that the graph Laplacian is built upon a first approximation of the solution obtained as the output of a trained neural network. Numerical examples in 2D computerized tomography demonstrate the efficacy of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ao, W., Li, W., Qian, J.: A data and knowledge driven approach for SPECT using convolutional neural networks and iterative algorithms. J. Inverse Ill-Posed Probl. 29(4), 543–555 (2021). https://doi.org/10.1515/jiip-2020-0056
Bianchi, D., Buccini, A., Donatelli, M., Randazzo, E.: Graph Laplacian for image deblurring. ETNA 55, 169–186 (2022). https://doi.org/10.1553/etna_vol55s169
Bianchi, D., Lai, G., Li, W.: Uniformly convex neural networks and non-stationary iterated network Tikhonov (iNETT) method. Inverse Prob. (2023). https://doi.org/10.1088/1361-6420/acc2b6
Buccini, A., Donatelli, M.: Graph Laplacian in \(\ell ^{2}-\ell ^{q}\) regularization for image reconstruction. In: 2021 21st International Conference on Computational Science and Its Applications (ICCSA), pp. 29–38. IEEE (2021). https://doi.org/10.1109/ICCSA54496.2021.00015
Calatroni, L., van Gennip, Y., Schönlieb, C.-B., Rowland, H.M., Flenner, A.: Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images. J. Math. Imaging Vision 57(2), 269–291 (2016). https://doi.org/10.1007/s10851-016-0678-0
Evangelista, D., Morotti, E., Loli Piccolomini, E.: COULE dataset (2021). https://www.kaggle.com/datasets/loiboresearchgroup/coule-dataset
Evangelista, D., Morotti, E., Piccolomini, E.L.: RISING: a new framework for model-based few-view CT image reconstruction with deep learning. Comput. Med. Imaging Graph. 103, 102156 (2023). https://doi.org/10.1016/j.compmedimag.2022.102156
Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009). https://doi.org/10.1137/070698592
Hansen, P.C.: Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. In: SIAM (1998)
Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring images: matrices, spectra, and filtering. In: SIAM (2006)
Keller, M., Lenz, D., Wojciechowski, R.K.: Graphs and Discrete Dirichlet Spaces. Grundlehren der mathematischen Wissenschaften. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81459-5
Kingma, D.P., Ba, J.: Adam: a method for Stochastic Optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural networks. Inverse Probl. 36(6), 065005 (2020). https://doi.org/10.1088/1361-6420/ab6d57
Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 57–68. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_5
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging, 1st edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-69277-7
Tewodrose, D.: A survey on spectral embeddings and their application in data analysis. Séminaire de théorie spectrale et géométrie 35, 197–244 (2021). https://doi.org/10.5802/tsg.369
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Acknowledgments
We want to thank the authors of [6] to share the dataset and the authors of [4] to share the code. Davide Bianchi is supported by NSFC (grant no. 12250410253). Wenbin Li is supported by Natural Science Foundation of Shenzhen (grant no. JCYJ20190806144005645) and NSFC (grant no. 41804096). Marco Donatelli is partially supported by GNCS (project 2022 “Tecniche numeriche per lo studio dei problemi inversi e l’analisi delle reti complesse”).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bianchi, D., Donatelli, M., Evangelista, D., Li, W., Piccolomini, E.L. (2023). Graph Laplacian and Neural Networks for Inverse Problems in Imaging: GraphLaNet. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-31975-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31974-7
Online ISBN: 978-3-031-31975-4
eBook Packages: Computer ScienceComputer Science (R0)