Skip to main content

Proximal Residual Flows for Bayesian Inverse Problems

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

  • 1554 Accesses

Abstract

Normalizing flows are a powerful tool for generative modelling, density estimation and posterior reconstruction in Bayesian inverse problems. In this paper, we introduce proximal residual flows, a new architecture of normalizing flows. Based on the fact, that proximal neural networks are by definition averaged operators, we ensure invertibility of certain residual blocks. Moreover, we extend the architecture to conditional proximal residual flows for posterior reconstruction within Bayesian inverse problems. We demonstrate the performance of proximal residual flows on numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/johertrich/Proximal_Residual_Flows.

  2. 2.

    For the data generation and evaluation of this example, we use the code of [44] available at https://github.com/noegroup/stochastic_normalizing_flows.

References

  1. Altekrüger, F., Hertrich, J.: WPPNets and WPPFlows: The power of Wasserstein patch priors for superresolution. arXiv preprint arXiv:2201.08157 (2022)

  2. Arbel, M., Matthews, A., Doucet, A.: Annealed flow transport Monte Carlo. In: International Conference on Machine Learning, pp. 318–330. PMLR (2021)

    Google Scholar 

  3. Ardizzone, L., Kruse, J., Rother, C., Köthe, U.: Analyzing inverse problems with invertible neural networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Ardizzone, L., Lüth, C., Kruse, J., Rother, C., Köthe, U.: Guided image generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019)

  5. Behrmann, J., Grathwohl, W., Chen, R.T., Duvenaud, D., Jacobsen, J.H.: Invertible residual networks. In: International Conference on Machine Learning, pp. 573–582 (2019)

    Google Scholar 

  6. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  8. Chen, R.T.Q., Behrmann, J., Duvenaud, D.K., Jacobsen, J.H.: Residual flows for invertible generative modeling. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  9. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  10. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-point algorithms for inverse problems in science and engineering. Springer Optimization and Its Applications, vol. 49, pp. 185–212. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  MATH  Google Scholar 

  11. Combettes, P.L., Pesquet, J.C.: Deep neural network structures solving variational inequalities. Set-Valued Variational Anal. 28(3), 491–518 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Denker, A., Schmidt, M., Leuschner, J., Maass, P.: Conditional invertible neural networks for medical imaging. J. Imaging 7(11), 243 (2021)

    Article  Google Scholar 

  13. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, Workshop Track Proceedings (2015)

    Google Scholar 

  14. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  16. Glowinski, R., Osher, S.J., Yin, W.: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Cham (2017)

    MATH  Google Scholar 

  17. Gouk, H., Frank, E., Pfahringer, B., Cree, M.J.: Regularisation of neural networks by enforcing Lipschitz continuity. Mach. Learn. 110(2), 393–416 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: FFJORD: free-form continuous dynamics for scalable reversible generative models. In: International Conference on Learning Representations (2018)

    Google Scholar 

  19. Hagemann, P., Hertrich, J., Steidl, G.: Generalized normalizing flows via Markov Chains. arXiv preprint arXiv:2111.12506 (2021)

  20. Hagemann, P., Hertrich, J., Steidl, G.: Stochastic normalizing flows for inverse problems: a Markov Chains viewpoint. SIAM/ASA J. Uncertainty Quantification 10(3), 1162–1190 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hagemann, P., Neumayer, S.: Stabilizing invertible neural networks using mixture models. Inverse Prob. 37(8), 085002 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hasannasab, M., Hertrich, J., Neumayer, S., Plonka, G., Setzer, S., Steidl, G.: Parseval proximal neural networks. J. Fourier Anal. Appl. 26, 59 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Heidenreich, S., Gross, H., Bär, M.: Bayesian approach to the statistical inverse problem of scatterometry: comparison of three surrogate models. Int. J. Uncertainty Quantification 5(6) (2015)

    Google Scholar 

  25. Heidenreich, S., Gross, H., Bär, M.: Bayesian approach to determine critical dimensions from scatterometric measurements. Metrologia 55(6), S201 (2018)

    Article  Google Scholar 

  26. Hertrich, J., Neumayer, S., Steidl, G.: Convolutional proximal neural networks and plug-and-play algorithms. Linear Algebra Appl. 631, 203–234 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hertrich, J., Steidl, G.: Inertial stochastic PALM and applications in machine learning. Sampling Theory Signal Process. Data Anal. 20(1), 4 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  29. Horn, R.A., Johnson, C.R.: Matrix Analysis. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  30. Huang, C.W., Chen, R.T., Tsirigotis, C., Courville, A.: Convex potential flows: universal probability distributions with optimal transport and convex optimization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  31. Huang, C.W., Krueger, D., Lacoste, A., Courville, A.: Neural autoregressive flows. In: International Conference on Machine Learning, pp. 2078–2087 (2018)

    Google Scholar 

  32. Jaini, P., Kobyzev, I., Yu, Y., Brubaker, M.: Tails of Lipschitz triangular flows. In: International Conference on Machine Learning, pp. 4673–4681. PMLR (2020)

    Google Scholar 

  33. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  34. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  35. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  36. Noé, F., Olsson, S., Köhler, J., Wu, H.: Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365(6457), 1147 (2019)

    Article  Google Scholar 

  37. Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. In: Advances in Neural Information Processing Systems, pp. 2338–2347 (2017)

    Google Scholar 

  38. Pesquet, J.C., Repetti, A., Terris, M., Wiaux, Y.: Learning maximally monotone operators for image recovery. SIAM J. Imaging Sci. 14(3), 1206–1237 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538. PMLR (2015)

    Google Scholar 

  41. Salmona, A., De Bortoli, V., Delon, J., Desolneux, A.: Can push-forward generative models fit multimodal distributions? In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  42. Sedghi, H., Gupta, V., Long, P.M.: The singular values of convolutional layers. In: International Conference on Learning Representations (2018)

    Google Scholar 

  43. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  44. Wu, H., Köhler, J., Noé, F.: Stochastic normalizing flows. Adv. Neural. Inf. Process. Syst. 33, 5933–5944 (2020)

    Google Scholar 

Download references

Acknowledgements

Funding by the German Research Foundation (DFG) within the project STE 571/16-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hertrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hertrich, J. (2023). Proximal Residual Flows for Bayesian Inverse Problems. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy