Skip to main content

A Frame Decomposition of the Funk-Radon Transform

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Abstract

The Funk-Radon transform assigns to a function defined on the unit sphere its integrals along all great circles of the sphere. In this paper, we consider a frame decomposition of the Funk-Radon transform, which is a flexible alternative to the singular value decomposition. In particular, we construct a novel frame decomposition based on trigonometric polynomials and show its application for the inversion of the Funk-Radon transform. Our theoretical findings are verified by numerical experiments, which also incorporate a regularization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramovich, F., Silverman, B.W.: Wavelet decomposition approaches to statistical inverse problems. Biometrika 85(1), 115–129 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovsky, M., Rubin, B.: Non-geodesic spherical funk transforms with one and two centers. In: Bauer, W., Duduchava, R., Grudsky, S., Kaashoek, M.A. (eds.) Operator Algebras, Toeplitz Operators and Related Topics. OTAA, vol. 279, pp. 29–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44651-2_7

    Chapter  MATH  Google Scholar 

  3. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25983-8

    Book  MATH  Google Scholar 

  4. Bailey, T.N., Eastwood, M.G., Gover, A., Mason, L.: Complex analysis and the Funk transform. J. Korean Math. Soc. 40(4), 577–593 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellet, J.-B.: A discrete Funk transform on the cubed sphere. J. Comput. Appl. Math. 429, 115205 (2023). https://doi.org/10.1016/j.cam.2023.115205

  6. Candes, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002). https://doi.org/10.1214/aos/1028674842

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhäuser, Cham (2016)

    Google Scholar 

  8. Colonna, F., Easley, G., Guo, K., Labate, D.: Radon transform inversion using the shearlet representation. Appl. Comput. Harmon. Anal. 29(2), 232–250 (2010). https://doi.org/10.1016/j.acha.2009.10.005

    Article  MathSciNet  MATH  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992). https://doi.org/10.1137/1.9781611970104

  10. Dicken, V., Maass, P.: Wavelet-Galerkin methods for ill-posed problems. J. Inverse Ill-Posed Probl. 4(3), 203–221 (1996). https://doi.org/10.1515/jiip.1996.4.3.203

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, D.L.: Nonlinear solution of linear inverse problems by Wavelet-Vaguelette decomposition. Appl. Comput. Harmon. Anal. 2(2), 101–126 (1995). https://doi.org/10.1006/acha.1995.1008

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebner, A., Frikel, J., Lorenz, D., Schwab, J., Haltmeier, M.: Regularization of inverse problems by filtered diagonal frame decomposition. Appl. Comput. Harmon. Anal. 62, 66–83 (2023). https://doi.org/10.1016/j.acha.2022.08.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  14. Frikel, J.: Sparse regularization in limited angle tomography. Appl. Comput. Harmon. Anal. 34(1), 117–141 (2013). https://doi.org/10.1016/j.acha.2012.03.005

    Article  MathSciNet  MATH  Google Scholar 

  15. Frikel, J., Haltmeier, M.: Efficient regularization with wavelet sparsity constraints in photoacoustic tomography. Inverse Probl. 34(2), 024006 (2018). https://doi.org/10.1088/1361-6420/aaa0ac

    Article  MathSciNet  MATH  Google Scholar 

  16. Frikel, J., Haltmeier, M.: Sparse regularization of inverse problems by operator-adapted frame thresholding. In: Dörfler, W., et al. (eds.) Mathematics of Wave Phenomena, pp. 163–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47174-3_10

    Chapter  MATH  Google Scholar 

  17. Funk, P.: Über Flächen mit lauter geschlossenen geodätischen Linien. Math. Ann. 74(2), 278–300 (1913). https://doi.org/10.1007/BF01456044

    Article  MathSciNet  MATH  Google Scholar 

  18. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006). https://doi.org/10.1017/CBO9781107341029

    Book  MATH  Google Scholar 

  19. Gräf, M.: Quadrature rules on manifolds. https://www.tu-chemnitz.de/~potts/workgroup/graef/quadrature

  20. Gräf, M., Potts, D.: On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. 119, 699–724 (2011). https://doi.org/10.1007/s00211-011-0399-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-6055-9

    Book  MATH  Google Scholar 

  22. Hielscher, R., Potts, D., Quellmalz, M.: An SVD in spherical surface wave tomography. In: Hofmann, B., Leitão, A., Zubelli, J.P. (eds.) New Trends in Parameter Identification for Mathematical Models. TM, pp. 121–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70824-9_7

    Chapter  MATH  Google Scholar 

  23. Hielscher, R., Quellmalz, M.: Optimal mollifiers for spherical deconvolution. Inverse Probl. 31(8), 085001 (2015). https://doi.org/10.1088/0266-5611/31/8/085001

    Article  MathSciNet  MATH  Google Scholar 

  24. Hristova, Y., Moon, S., Steinhauer, D.: A Radon-type transform arising in photoacoustic tomography with circular detectors: spherical geometry. Inverse Probl. Sci. Eng. 24(6), 974–989 (2016). https://doi.org/10.1080/17415977.2015.1088537

    Article  MathSciNet  MATH  Google Scholar 

  25. Hubmer, S., Ramlau, R.: A frame decomposition of the atmospheric tomography operator. Inverse Probl. 36(9), 094001 (2020). https://doi.org/10.1088/1361-6420/aba4fe

    Article  MathSciNet  MATH  Google Scholar 

  26. Hubmer, S., Ramlau, R.: Frame decompositions of bounded linear operators in Hilbert spaces with applications in tomography. Inverse Probl. 37(5), 055001 (2021). https://doi.org/10.1088/1361-6420/abe5b8

    Article  MathSciNet  MATH  Google Scholar 

  27. Hubmer, S., Ramlau, R., Weissinger, L.: On regularization via frame decompositions with applications in tomography. Inverse Probl. 38(5), 055003 (2022). https://doi.org/10.1088/1361-6420/ac5b86

    Article  MathSciNet  MATH  Google Scholar 

  28. Kazantsev, S.G.: Funk-Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere. Sib. Èlektron. Mat. Izv. 15, 1630–1650 (2018). https://doi.org/10.33048/semi.2018.15.135

  29. Keiner, J., Kunis, S., Potts, D.: Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36, Article 19, 1–30 (2009). https://doi.org/10.1145/1555386.1555388

  30. Klann, E., Ramlau, R.: Regularization by fractional filter methods and data smoothing. Inverse Probl. 24(2), 025018 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kudryavtsev, A.A., Shestakov, O.V.: Estimation of the loss function when using Wavelet-Vaguelette decomposition for solving Ill-posed problems. J. Math. Sci. 237(6), 804–809 (2019). https://doi.org/10.1007/s10958-019-04206-z

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunis, S., Potts, D.: Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161, 75–98 (2003). https://doi.org/10.1016/S0377-0427(03)00546-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Lee, N.: Wavelet-Vaguelette decompositions and homogeneous equations. ProQuest LLC, Ann Arbor, thesis (Ph.D.)-Purdue University (1997)

    Google Scholar 

  34. Louis, A.K., Riplinger, M., Spiess, M., Spodarev, E.: Inversion algorithms for the spherical Radon and cosine transform. Inverse Probl. 27(3), 035015 (2011). https://doi.org/10.1088/0266-5611/27/3/035015

    Article  MathSciNet  MATH  Google Scholar 

  35. Mildenberger, S., Quellmalz, M.: Approximation properties of the double Fourier sphere method. J. Fourier Anal. Appl. 28(2), 1–30 (2022). https://doi.org/10.1007/s00041-022-09928-4

    Article  MathSciNet  MATH  Google Scholar 

  36. Minkowski, H.: Sur les corps de largeur constante. Matematiceskij Sbornik 25(3), 505–508 (1905). https://mi.mathnet.ru/sm6643

  37. Müller, C.: Spherical Harmonics. Springer, Aachen (1966)

    Google Scholar 

  38. Plonka, G., Potts, D., Steidl, G., Tasche, M.: Numerical Fourier Analysis. Birkhäuser, Cham (2018). https://doi.org/10.1007/978-3-030-04306-3

  39. Quellmalz, M.: A generalization of the Funk-Radon transform. Inverse Probl. 33(3), 035016 (2017). https://doi.org/10.1088/1361-6420/33/3/035016

    Article  MathSciNet  MATH  Google Scholar 

  40. Quellmalz, M.: Reconstructing functions on the sphere from circular means. Dissertation, Universitätsverlag Chemnitz (2019). https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-384068

  41. Quellmalz, M.: The Funk-Radon transform for hyperplane sections through a common point. Anal. Math. Phys. 10(3), 1–29 (2020). https://doi.org/10.1007/s13324-020-00383-2

    Article  MathSciNet  MATH  Google Scholar 

  42. Quellmalz, M., Hielscher, R., Louis, A.K.: The cone-beam transform and spherical convolution operators. Inverse Probl. 34(10), 105006 (2018). https://doi.org/10.1088/1361-6420/aad679

    Article  MathSciNet  MATH  Google Scholar 

  43. Rauff, A., Timmins, L.H., Whitaker, R.T., Weiss, J.A.: A nonparametric approach for estimating three-dimensional fiber orientation distribution functions (ODFs) in fibrous materials. IEEE Trans. Med. Imaging 41(2), 446–455 (2022). https://doi.org/10.1109/TMI.2021.3115716

    Article  Google Scholar 

  44. Riplinger, M., Spiess, M.: Numerical inversion of the spherical Radon transform and the cosine transform using the approximate inverse with a special class of locally supported mollifiers. J. Inverse Ill-Posed Probl. 22(4), 497–536 (2013). https://doi.org/10.1515/jip-2012-0095

    Article  MathSciNet  MATH  Google Scholar 

  45. Rubin, B.: On the spherical slice transform. Anal. Appl. 20(3), 483–497 (2022). https://doi.org/10.1142/S021953052150024X

    Article  MathSciNet  MATH  Google Scholar 

  46. Salman, Y.: Recovering functions defined on the unit sphere by integration on a special family of sub-spheres. Anal. Math. Phys. 7(2), 165–185 (2016). https://doi.org/10.1007/s13324-016-0135-7

    Article  MathSciNet  MATH  Google Scholar 

  47. Strichartz, R.S.: \(L^p\) estimates for Radon transforms in Euclidean and non-Euclidean spaces. Duke Math. J. 48(4), 699–727 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. Terzioglu, F.: Recovering a function from its integrals over conical surfaces through relations with the Radon transform. Inverse Probl. 39(2), 024005 (2023). https://doi.org/10.1088/1361-6420/acad24

    Article  MathSciNet  MATH  Google Scholar 

  49. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004). https://doi.org/10.1002/mrm.20279

    Article  Google Scholar 

  50. Weissinger, L.: Realization of the frame decomposition of the atmospheric tomography operator. Master’s thesis, JKU Linz (2021). https://lisss.jku.at/permalink/f/n2r1to/ULI_alma5185824070003340

  51. Wilber, H., Townsend, A., Wright, G.B.: Computing with functions in spherical and polar geometries II. The disk. SIAM J. Sci. Comput. 39(3), C238–C262 (2017). https://doi.org/10.1137/16M1070207

    Article  MathSciNet  MATH  Google Scholar 

  52. Yarman, C.E., Yazici, B.: Inversion of the circular averages transform using the Funk transform. Inverse Probl. 27(6), 065001 (2011). https://doi.org/10.1088/0266-5611/27/6/065001

    Article  MathSciNet  MATH  Google Scholar 

  53. Yee, S.Y.K.: Studies on Fourier series on spheres. Mon. Weather Rev. 108(5), 676–678 (1980). https://doi.org/10.1175/1520-0493(1980)108<0676:SOFSOS>2.0.CO;2

Download references

Acknowledgements

This work was funded by the Austrian Science Fund (FWF): project F6805-N36 (SH) and the German Research Foundation (DFG): project 495365311 (MQ) within the SFB F68: “Tomography Across the Scales”. LW is partially supported by the State of Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Quellmalz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quellmalz, M., Weissinger, L., Hubmer, S., Erchinger, P.D. (2023). A Frame Decomposition of the Funk-Radon Transform. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy