Abstract
The Funk-Radon transform assigns to a function defined on the unit sphere its integrals along all great circles of the sphere. In this paper, we consider a frame decomposition of the Funk-Radon transform, which is a flexible alternative to the singular value decomposition. In particular, we construct a novel frame decomposition based on trigonometric polynomials and show its application for the inversion of the Funk-Radon transform. Our theoretical findings are verified by numerical experiments, which also incorporate a regularization scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramovich, F., Silverman, B.W.: Wavelet decomposition approaches to statistical inverse problems. Biometrika 85(1), 115–129 (1998)
Agranovsky, M., Rubin, B.: Non-geodesic spherical funk transforms with one and two centers. In: Bauer, W., Duduchava, R., Grudsky, S., Kaashoek, M.A. (eds.) Operator Algebras, Toeplitz Operators and Related Topics. OTAA, vol. 279, pp. 29–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44651-2_7
Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25983-8
Bailey, T.N., Eastwood, M.G., Gover, A., Mason, L.: Complex analysis and the Funk transform. J. Korean Math. Soc. 40(4), 577–593 (2003)
Bellet, J.-B.: A discrete Funk transform on the cubed sphere. J. Comput. Appl. Math. 429, 115205 (2023). https://doi.org/10.1016/j.cam.2023.115205
Candes, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002). https://doi.org/10.1214/aos/1028674842
Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhäuser, Cham (2016)
Colonna, F., Easley, G., Guo, K., Labate, D.: Radon transform inversion using the shearlet representation. Appl. Comput. Harmon. Anal. 29(2), 232–250 (2010). https://doi.org/10.1016/j.acha.2009.10.005
Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992). https://doi.org/10.1137/1.9781611970104
Dicken, V., Maass, P.: Wavelet-Galerkin methods for ill-posed problems. J. Inverse Ill-Posed Probl. 4(3), 203–221 (1996). https://doi.org/10.1515/jiip.1996.4.3.203
Donoho, D.L.: Nonlinear solution of linear inverse problems by Wavelet-Vaguelette decomposition. Appl. Comput. Harmon. Anal. 2(2), 101–126 (1995). https://doi.org/10.1006/acha.1995.1008
Ebner, A., Frikel, J., Lorenz, D., Schwab, J., Haltmeier, M.: Regularization of inverse problems by filtered diagonal frame decomposition. Appl. Comput. Harmon. Anal. 62, 66–83 (2023). https://doi.org/10.1016/j.acha.2022.08.005
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)
Frikel, J.: Sparse regularization in limited angle tomography. Appl. Comput. Harmon. Anal. 34(1), 117–141 (2013). https://doi.org/10.1016/j.acha.2012.03.005
Frikel, J., Haltmeier, M.: Efficient regularization with wavelet sparsity constraints in photoacoustic tomography. Inverse Probl. 34(2), 024006 (2018). https://doi.org/10.1088/1361-6420/aaa0ac
Frikel, J., Haltmeier, M.: Sparse regularization of inverse problems by operator-adapted frame thresholding. In: Dörfler, W., et al. (eds.) Mathematics of Wave Phenomena, pp. 163–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47174-3_10
Funk, P.: Über Flächen mit lauter geschlossenen geodätischen Linien. Math. Ann. 74(2), 278–300 (1913). https://doi.org/10.1007/BF01456044
Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006). https://doi.org/10.1017/CBO9781107341029
Gräf, M.: Quadrature rules on manifolds. https://www.tu-chemnitz.de/~potts/workgroup/graef/quadrature
Gräf, M., Potts, D.: On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. 119, 699–724 (2011). https://doi.org/10.1007/s00211-011-0399-7
Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-6055-9
Hielscher, R., Potts, D., Quellmalz, M.: An SVD in spherical surface wave tomography. In: Hofmann, B., Leitão, A., Zubelli, J.P. (eds.) New Trends in Parameter Identification for Mathematical Models. TM, pp. 121–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70824-9_7
Hielscher, R., Quellmalz, M.: Optimal mollifiers for spherical deconvolution. Inverse Probl. 31(8), 085001 (2015). https://doi.org/10.1088/0266-5611/31/8/085001
Hristova, Y., Moon, S., Steinhauer, D.: A Radon-type transform arising in photoacoustic tomography with circular detectors: spherical geometry. Inverse Probl. Sci. Eng. 24(6), 974–989 (2016). https://doi.org/10.1080/17415977.2015.1088537
Hubmer, S., Ramlau, R.: A frame decomposition of the atmospheric tomography operator. Inverse Probl. 36(9), 094001 (2020). https://doi.org/10.1088/1361-6420/aba4fe
Hubmer, S., Ramlau, R.: Frame decompositions of bounded linear operators in Hilbert spaces with applications in tomography. Inverse Probl. 37(5), 055001 (2021). https://doi.org/10.1088/1361-6420/abe5b8
Hubmer, S., Ramlau, R., Weissinger, L.: On regularization via frame decompositions with applications in tomography. Inverse Probl. 38(5), 055003 (2022). https://doi.org/10.1088/1361-6420/ac5b86
Kazantsev, S.G.: Funk-Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere. Sib. Èlektron. Mat. Izv. 15, 1630–1650 (2018). https://doi.org/10.33048/semi.2018.15.135
Keiner, J., Kunis, S., Potts, D.: Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36, Article 19, 1–30 (2009). https://doi.org/10.1145/1555386.1555388
Klann, E., Ramlau, R.: Regularization by fractional filter methods and data smoothing. Inverse Probl. 24(2), 025018 (2008)
Kudryavtsev, A.A., Shestakov, O.V.: Estimation of the loss function when using Wavelet-Vaguelette decomposition for solving Ill-posed problems. J. Math. Sci. 237(6), 804–809 (2019). https://doi.org/10.1007/s10958-019-04206-z
Kunis, S., Potts, D.: Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161, 75–98 (2003). https://doi.org/10.1016/S0377-0427(03)00546-6
Lee, N.: Wavelet-Vaguelette decompositions and homogeneous equations. ProQuest LLC, Ann Arbor, thesis (Ph.D.)-Purdue University (1997)
Louis, A.K., Riplinger, M., Spiess, M., Spodarev, E.: Inversion algorithms for the spherical Radon and cosine transform. Inverse Probl. 27(3), 035015 (2011). https://doi.org/10.1088/0266-5611/27/3/035015
Mildenberger, S., Quellmalz, M.: Approximation properties of the double Fourier sphere method. J. Fourier Anal. Appl. 28(2), 1–30 (2022). https://doi.org/10.1007/s00041-022-09928-4
Minkowski, H.: Sur les corps de largeur constante. Matematiceskij Sbornik 25(3), 505–508 (1905). https://mi.mathnet.ru/sm6643
Müller, C.: Spherical Harmonics. Springer, Aachen (1966)
Plonka, G., Potts, D., Steidl, G., Tasche, M.: Numerical Fourier Analysis. Birkhäuser, Cham (2018). https://doi.org/10.1007/978-3-030-04306-3
Quellmalz, M.: A generalization of the Funk-Radon transform. Inverse Probl. 33(3), 035016 (2017). https://doi.org/10.1088/1361-6420/33/3/035016
Quellmalz, M.: Reconstructing functions on the sphere from circular means. Dissertation, Universitätsverlag Chemnitz (2019). https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-384068
Quellmalz, M.: The Funk-Radon transform for hyperplane sections through a common point. Anal. Math. Phys. 10(3), 1–29 (2020). https://doi.org/10.1007/s13324-020-00383-2
Quellmalz, M., Hielscher, R., Louis, A.K.: The cone-beam transform and spherical convolution operators. Inverse Probl. 34(10), 105006 (2018). https://doi.org/10.1088/1361-6420/aad679
Rauff, A., Timmins, L.H., Whitaker, R.T., Weiss, J.A.: A nonparametric approach for estimating three-dimensional fiber orientation distribution functions (ODFs) in fibrous materials. IEEE Trans. Med. Imaging 41(2), 446–455 (2022). https://doi.org/10.1109/TMI.2021.3115716
Riplinger, M., Spiess, M.: Numerical inversion of the spherical Radon transform and the cosine transform using the approximate inverse with a special class of locally supported mollifiers. J. Inverse Ill-Posed Probl. 22(4), 497–536 (2013). https://doi.org/10.1515/jip-2012-0095
Rubin, B.: On the spherical slice transform. Anal. Appl. 20(3), 483–497 (2022). https://doi.org/10.1142/S021953052150024X
Salman, Y.: Recovering functions defined on the unit sphere by integration on a special family of sub-spheres. Anal. Math. Phys. 7(2), 165–185 (2016). https://doi.org/10.1007/s13324-016-0135-7
Strichartz, R.S.: \(L^p\) estimates for Radon transforms in Euclidean and non-Euclidean spaces. Duke Math. J. 48(4), 699–727 (1981)
Terzioglu, F.: Recovering a function from its integrals over conical surfaces through relations with the Radon transform. Inverse Probl. 39(2), 024005 (2023). https://doi.org/10.1088/1361-6420/acad24
Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004). https://doi.org/10.1002/mrm.20279
Weissinger, L.: Realization of the frame decomposition of the atmospheric tomography operator. Master’s thesis, JKU Linz (2021). https://lisss.jku.at/permalink/f/n2r1to/ULI_alma5185824070003340
Wilber, H., Townsend, A., Wright, G.B.: Computing with functions in spherical and polar geometries II. The disk. SIAM J. Sci. Comput. 39(3), C238–C262 (2017). https://doi.org/10.1137/16M1070207
Yarman, C.E., Yazici, B.: Inversion of the circular averages transform using the Funk transform. Inverse Probl. 27(6), 065001 (2011). https://doi.org/10.1088/0266-5611/27/6/065001
Yee, S.Y.K.: Studies on Fourier series on spheres. Mon. Weather Rev. 108(5), 676–678 (1980). https://doi.org/10.1175/1520-0493(1980)108<0676:SOFSOS>2.0.CO;2
Acknowledgements
This work was funded by the Austrian Science Fund (FWF): project F6805-N36 (SH) and the German Research Foundation (DFG): project 495365311 (MQ) within the SFB F68: “Tomography Across the Scales”. LW is partially supported by the State of Upper Austria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Quellmalz, M., Weissinger, L., Hubmer, S., Erchinger, P.D. (2023). A Frame Decomposition of the Funk-Radon Transform. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-31975-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31974-7
Online ISBN: 978-3-031-31975-4
eBook Packages: Computer ScienceComputer Science (R0)