Skip to main content

Learning Engagement and Peer Learning in MOOC: A Selective Systematic Review

  • Conference paper
  • First Online:
Augmented Intelligence and Intelligent Tutoring Systems (ITS 2023)

Abstract

Massive open online courses (MOOCs) improve learning; but their low completion rate remain problematic. Peer learning has been proposed as a method to increase learning engagement in MOOCs, thereby decreasing the dropout rate. However, the effectiveness of peer learning in promoting learning engagement in MOOCs remains underexplored. This systematic review aimed to examine the effect of peer learning on learning engagement in MOOCs. Eight articles met the inclusion and quality assurance criteria using the PRISMA method. We found that: (1) limited research has analyzed learner engagement within peer learning; (2) learner engagement can be measured through analysis of log, text, and survey data; and (3) peer learning can positively impact learning outcomes in MOOCs (completion rates, quiz completion rates, and quiz scores).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gallego-Romero, J.M., Alario-Hoyos, C., Estévez-Ayres, I., Delgado Kloos, C.: Analyzing learners’ engagement and behavior in MOOCs on programming with the Codeboard IDE. Educ. Tech. Res. Dev. 68(5), 2505–2528 (2020). https://doi.org/10.1007/s11423-020-09773-6

    Article  Google Scholar 

  2. Shen, J., Yang, H., Li, J., Cheng, Z.: Assessing learning engagement based on facial expression recognition in MOOC’s scenario. Multimedia Syst. 28(2), 469–478 (2021). https://doi.org/10.1007/s00530-021-00854-x

    Article  Google Scholar 

  3. Liu, C., Zou, D., Chen, X., Xie, H., Chan, W.H.: A bibliometric review on latent topics and trends of the empirical MOOC literature (2008–2019). Asia Pac. Educ. Rev. 22(3), 515–534 (2021). https://doi.org/10.1007/s12564-021-09692-y

    Article  Google Scholar 

  4. Kizilcec, R.F., et al.: Scaling up behavioral science interventions in online education. Proc. Natl. Acad. Sci. 117(26), 14900–14905 (2020). https://doi.org/10.1073/pnas.192141711

    Article  Google Scholar 

  5. Jordan, K.: Initial trends in enrolment and completion of massive open online courses. Int. Rev. Res. Open Distrib. Learn. 15(1), 133–160 (2014). https://doi.org/10.19173/irrodl.v15i1.1651

    Article  Google Scholar 

  6. Yin, S., Shang, Q., Wang, H., Che, B.: The analysis and early warning of student loss in MOOC course. In: Proceedings of the ACM Turing Celebration Conference-China, pp. 1–6 (2019). https://doi.org/10.1145/3321408.3322854

  7. Dalipi, F., Imran, A.S., Kastrati, Z.: MOOC dropout prediction using machine learning techniques: review and research challenges. In: 2018 IEEE Global Engineering Education Conference (EDUCON), pp. 1007–1014 (2018)

    Google Scholar 

  8. Hone, K.S., El Said, G.R.: Exploring the factors affecting MOOC retention: a survey study. Comput. Educ. 98, 157–168 (2016). https://doi.org/10.1016/j.compedu.2016.03.016

    Article  Google Scholar 

  9. Bulger, M., Bright, J., Cobo, C.: The real component of virtual learning: motivations for face-to-face MOOC meetings in developing and industrialised countries. Inf. Commun. Soc. 18(10), 1200–1216 (2015). https://doi.org/10.1080/1369118X.2015.1061571

    Article  Google Scholar 

  10. Croft, N., Dalton, A., Grant, M.: Overcoming isolation in distance learning: building a learning community through time and space. J. Educ. Built Env. 5(1), 27–64 (2015). https://doi.org/10.11120/jebe.2010.05010027

    Article  Google Scholar 

  11. Poon, J.: Blended learning: an institutional approach for enhancing students’ learning experiences. MERLOT J. Online Learn. Teach. 9(2), 271–289 (2013)

    Google Scholar 

  12. Smyth, S., Houghton, C., Cooney, A., Casey, D.: Students’ experiences of blended learning across a range of postgraduate programmes. Nurse Educ. Today 32(4), 464–468 (2012). https://doi.org/10.1016/j.nedt.2011.05.014

    Article  Google Scholar 

  13. Rovai, A.P.: Building sense of community at a distance. The Int. Rev. Res. Open and Distrib. Learn. 3(1), 1–16 (2002). https://doi.org/10.19173/irrodl.v3i1.79

    Article  Google Scholar 

  14. Liu, S.: Student interaction experiences in distance learning courses: a phenomenological study. Online J. Distance Learn. Adm. 11(1), 1–20 (2008)

    Google Scholar 

  15. Boud, D., Cohen, R., Sampson, J.: Peer Learning in Higher Education: Learning From and with Each Other. Routledge, London (2014). https://doi.org/10.4324/9781315042565

    Book  Google Scholar 

  16. Topping, K.J.: Trends in peer learning. Educ. Psychol. 25(6), 631–645 (2005). https://doi.org/10.1080/01443410500345172

    Article  Google Scholar 

  17. Almatrafi, O., Johri, A., Rangwala, H.: Needle in a Haystack: identifying learner posts that require urgent response in MOOC discussion forums. Comput. Educ. 118, 1–9 (2018). https://doi.org/10.1016/j.compedu.2017.11.002

    Article  Google Scholar 

  18. Labarthe, H., Bouchet, F., Bachelet, R., Yacef, K.: Does a peer recommender foster students’ engagement in MOOCs? In: 9th International Conference on Educational Data Mining, pp. 418–423 (2016)

    Google Scholar 

  19. Deng, R., Benckendorff, P., Gannaway, D.: Learner engagement in moocs: scale development and validation. Br. J. Edu. Technol. 51(1), 245–262 (2020). https://doi.org/10.1111/bjet.12810

    Article  Google Scholar 

  20. Jimerson, S.R., Campos, E., Greif, J.L.: Toward an understanding of definitions and measures of school engagement and related terms. Calif. Sch. Psychol. 8, 7–27 (2003)

    Article  Google Scholar 

  21. Jung, Y., Lee, J.: Learning engagement and persistence in massive open online courses (MOOCS). Comput. Educ. 122, 9–22 (2018). https://doi.org/10.1016/j.compedu.2018.02.013

    Article  Google Scholar 

  22. Fredricks, J.A., Blumenfeld, P.C., Paris, A.H.: School engagement: potential of the concept, state of the evidence. Rev. Educ. Res. 74, 59–109 (2004)

    Article  Google Scholar 

  23. Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906 (2021). https://doi.org/10.1016/j.ijsu.2021.105906

    Article  Google Scholar 

  24. Shah, V., Murthy, S., Warriem, J., Sahasrabudhe, S., Banerjee, G., Iyer, S.: Learner-centric MOOC model: a pedagogical design model towards active learner participation and higher completion rates. Educ. Tech. Res. Dev. 70(1), 263–288 (2022). https://doi.org/10.1007/s11423-022-10081-4

    Article  Google Scholar 

  25. Sunar, A.S., White, S., Abdullah, N.A., Davis, H.C.: How learners’ interactions sustain engagement: a MOOC case study. IEEE Trans. Learn. Technol. 10(4), 475–487 (2016)

    Article  Google Scholar 

  26. Allon, G., Van Mieghem, J., Zhang, D.: Does social interaction improve learning outcomes? field evidence from massive open online education. The Field Exp. Website 9, 347–367 (2016)

    Google Scholar 

  27. Ouyang, F., Li, X., Sun, D., Jiao, P., Yao, J.: Learners’ discussion patterns, perceptions, and preferences in a Chinese massive open online course (MOOC). Int. Rev. Res. Open Distrib. Learn. 21(3), 264–284 (2020). https://doi.org/10.19173/irrodl.v21i3.4771

    Article  Google Scholar 

  28. Walji, S., Deacon, A., Small, J., Czerniewicz, L.: Learning through engagement: MOOCs as an emergent form of provision. Distance Educ. 37(2), 208–223 (2016). https://doi.org/10.1080/01587919.2016.1184400

    Article  Google Scholar 

  29. Sun, Y., Guo, Y., Zhao, Y.: Understanding the determinants of learner engagement in MOOCs: an adaptive structuration perspective. Comput. Educ. 157, 103963 (2020). https://doi.org/10.1016/j.compedu.2020.103963

    Article  Google Scholar 

  30. Bouchet, F., Labarthe, H., Yacef, K., Bachelet, R.: Comparing peer recommendation strategies in a MOOC. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 129–134 (2017). https://doi.org/10.1145/3099023.3099036

  31. Kahu, E.R.: Framing student engagement in higher education. Stud. High. Educ. 38(5), 758–773 (2013). https://doi.org/10.1080/03075079.2011.598505

    Article  Google Scholar 

  32. Creswell, J.W., Plano Clark, V.L., Gutmann, M.L., Hanson, W.E.: Advanced mixed methods research designs. Handb. Mixed Methods in Soc. Behav. Res. 209(240), 209–240 (2003)

    Google Scholar 

  33. Lan, M., Hew, K.F.: Examining learning engagement in MOOCs: a self-determination theoretical perspective using mixed method. Int. J. Educ. Technol. High. Educ. 17(1), 1–24 (2020). https://doi.org/10.1186/s41239-020-0179-5

    Article  Google Scholar 

  34. Xiong, Y., Li, H., Kornhaber, M.L., Suen, H.K., Pursel, B., Goins, D.D.: Examining the relations among student motivation, engagement, and retention in a MOOC: a structural equation modeling approach. Global Education Review 2(3), 23–33 (2015)

    Google Scholar 

  35. Liu, S., Liu, S., Liu, Z., Peng, X., Yang, Z.: Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement. Comput. Educ. 181, 104461 (2022). https://doi.org/10.1016/j.compedu.2022.104461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Miladi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miladi, F., Lemire, D., Psyché, V. (2023). Learning Engagement and Peer Learning in MOOC: A Selective Systematic Review. In: Frasson, C., Mylonas, P., Troussas, C. (eds) Augmented Intelligence and Intelligent Tutoring Systems. ITS 2023. Lecture Notes in Computer Science, vol 13891. Springer, Cham. https://doi.org/10.1007/978-3-031-32883-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32883-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32882-4

  • Online ISBN: 978-3-031-32883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy