Abstract
Process discovery aims to discover models to explain the behaviors of information systems. The Inductive Miner (IM) discovery algorithm is able to discover process models with desirable properties: free-choiceness and soundness. Moreover, a family of variations makes IM practical for real-life applications. Due to the advantages, IM is regarded as the state of the art and has been implemented in commercial process mining software. However, IM can only discover block-structured process models that tend to have high fitness but low precision. To improve the quality of process models discovered by IM while preserving desirable properties, we propose an approach that applies property-preserving (free-choiceness and soundness) reduction/synthesis rules to iteratively modify the process model. The experimental results show that the models discovered by our approach have a more flexible representation while preserving desirable properties. Moreover, the model quality, as measured by the F1-score, is improved compared to the original models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the following formula for the F1-score: \(2\cdot \frac{precision \cdot fitness}{precision + fitness}\).
- 2.
Note that none of the directly-follows relations are filtered out using the default noise threshold for our running example \(L_s\) as most of the relations are frequent.
- 3.
There can be multiple activities with the same lowest similarity score. In such a case, we randomly choose one from the set.
- 4.
- 5.
- 6.
- 7.
- 8.
The cells in the matrix represent the relations between the corresponding two activities. For two activities \(x,y\in \mathcal {B}(\mathcal {U}_{A}^{*})\), \(x>y\) means that x is directly followed by y but not the other way round. \(x\#y\) represents that the two activities never follow each other while x||y means x and y both directly follows each other. For more details and a formal definition of the footprint matrix, we refer to [23].
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P.: Discovering directly-follows complete Petri nets from event data. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model Learning. LNCS, vol. 13560, pp. 539–558. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8_29
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Mining Knowl. Discov. 2(2), 182–192 (2012)
van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.W.: Choreography conformance checking: an approach based on BPEL and petri nets. In: The Role of Business Processes in Service Oriented Architectures. Dagstuhl Seminar Proceedings, vol. 06291. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006)
Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E Bus. Manag. 13(1), 37–67 (2015)
Armas Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., GarcÃa-Bañuelos, L.: Interactive and incremental business process model repair. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 53–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_5
Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discovery of structured process models from event logs: the discover-and-structure approach. Data Knowl. Eng. 117, 373–392 (2018)
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)
Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)
Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Advances in Petri Nets. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0046845
Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_26
Desel, J., Esparza, J.: Free Choice Petri Nets. No. 40, Cambridge University Press, Cambridge (1995)
Dixit, P.M.: Interactive process mining. Ph.D. thesis, Technische Universiteit Eindhoven (2019)
Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interactive data-driven process model construction. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 251–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_19
van Dongen, B.F., de Medeiros, A.K.A., Wen, L.: Process mining: overview and outlook of Petri net discovery algorithms. Trans. Petri Nets Other Model. Concurr. 2, 225–242 (2009)
Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to reality. Inf. Syst. 47, 220–243 (2015)
GarcÃa-Vallés, F., Colom, J.M.: Implicit places in net systems. In: PNPM, pp. 104–113. IEEE Computer Society (1999)
Huang, T., van der Aalst, W.M.P.: Comparing ordering strategies for process discovery using synthesis rules. In: Troya, J., et al. (eds.) ICSOC 2022. LNCS, vol. 13821, pp. 40–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26507-5_4
Huang, T., van der Aalst, W.M.P.: Discovering sound free-choice workflow nets with non-block structures. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol. 13585, pp. 200–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_12
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)
Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.: Impact-driven process model repair. ACM Trans. Softw. Eng. Methodol. 25(4), 28:1–28:60 (2017)
Rozinat, A., van der Aalst, W.M.P.: Conformance testing: measuring the fit and appropriateness of event logs and process models. In: Business Process Management Workshops, vol. 3812, pp. 163–176 (2005)
Acknowledgements
We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, TH., van der Aalst, W.M.P. (2023). Unblocking Inductive Miner. In: van der Aa, H., Bork, D., Proper, H.A., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2023 2023. Lecture Notes in Business Information Processing, vol 479. Springer, Cham. https://doi.org/10.1007/978-3-031-34241-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-34241-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34240-0
Online ISBN: 978-3-031-34241-7
eBook Packages: Computer ScienceComputer Science (R0)