Skip to main content

Unblocking Inductive Miner

While Preserving Desirable Properties

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2023, EMMSAD 2023)

Abstract

Process discovery aims to discover models to explain the behaviors of information systems. The Inductive Miner (IM) discovery algorithm is able to discover process models with desirable properties: free-choiceness and soundness. Moreover, a family of variations makes IM practical for real-life applications. Due to the advantages, IM is regarded as the state of the art and has been implemented in commercial process mining software. However, IM can only discover block-structured process models that tend to have high fitness but low precision. To improve the quality of process models discovered by IM while preserving desirable properties, we propose an approach that applies property-preserving (free-choiceness and soundness) reduction/synthesis rules to iteratively modify the process model. The experimental results show that the models discovered by our approach have a more flexible representation while preserving desirable properties. Moreover, the model quality, as measured by the F1-score, is improved compared to the original models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the following formula for the F1-score: \(2\cdot \frac{precision \cdot fitness}{precision + fitness}\).

  2. 2.

    Note that none of the directly-follows relations are filtered out using the default noise threshold for our running example \(L_s\) as most of the relations are frequent.

  3. 3.

    There can be multiple activities with the same lowest similarity score. In such a case, we randomly choose one from the set.

  4. 4.

    https://git.rwth-aachen.de/tsunghao.huang/unblockIM.

  5. 5.

    https://pm4py.fit.fraunhofer.de/.

  6. 6.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  7. 7.

    https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

  8. 8.

    The cells in the matrix represent the relations between the corresponding two activities. For two activities \(x,y\in \mathcal {B}(\mathcal {U}_{A}^{*})\), \(x>y\) means that x is directly followed by y but not the other way round. \(x\#y\) represents that the two activities never follow each other while x||y means x and y both directly follows each other. For more details and a formal definition of the footprint matrix, we refer to [23].

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. van der Aalst, W.M.P.: Discovering directly-follows complete Petri nets from event data. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model Learning. LNCS, vol. 13560, pp. 539–558. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8_29

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Mining Knowl. Discov. 2(2), 182–192 (2012)

    Article  Google Scholar 

  4. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.W.: Choreography conformance checking: an approach based on BPEL and petri nets. In: The Role of Business Processes in Service Oriented Architectures. Dagstuhl Seminar Proceedings, vol. 06291. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

    Google Scholar 

  5. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E Bus. Manag. 13(1), 37–67 (2015)

    Article  Google Scholar 

  6. Armas Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., García-Bañuelos, L.: Interactive and incremental business process model repair. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 53–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_5

    Chapter  Google Scholar 

  7. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discovery of structured process models from event logs: the discover-and-structure approach. Data Knowl. Eng. 117, 373–392 (2018)

    Article  Google Scholar 

  8. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

    Article  Google Scholar 

  9. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

    Article  Google Scholar 

  10. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Advances in Petri Nets. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0046845

    Chapter  Google Scholar 

  11. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_26

    Chapter  Google Scholar 

  12. Desel, J., Esparza, J.: Free Choice Petri Nets. No. 40, Cambridge University Press, Cambridge (1995)

    Google Scholar 

  13. Dixit, P.M.: Interactive process mining. Ph.D. thesis, Technische Universiteit Eindhoven (2019)

    Google Scholar 

  14. Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interactive data-driven process model construction. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 251–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_19

    Chapter  Google Scholar 

  15. van Dongen, B.F., de Medeiros, A.K.A., Wen, L.: Process mining: overview and outlook of Petri net discovery algorithms. Trans. Petri Nets Other Model. Concurr. 2, 225–242 (2009)

    Article  Google Scholar 

  16. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to reality. Inf. Syst. 47, 220–243 (2015)

    Article  Google Scholar 

  17. García-Vallés, F., Colom, J.M.: Implicit places in net systems. In: PNPM, pp. 104–113. IEEE Computer Society (1999)

    Google Scholar 

  18. Huang, T., van der Aalst, W.M.P.: Comparing ordering strategies for process discovery using synthesis rules. In: Troya, J., et al. (eds.) ICSOC 2022. LNCS, vol. 13821, pp. 40–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26507-5_4

    Chapter  Google Scholar 

  19. Huang, T., van der Aalst, W.M.P.: Discovering sound free-choice workflow nets with non-block structures. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol. 13585, pp. 200–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_12

    Chapter  Google Scholar 

  20. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

    Article  Google Scholar 

  21. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  22. Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.: Impact-driven process model repair. ACM Trans. Softw. Eng. Methodol. 25(4), 28:1–28:60 (2017)

    Google Scholar 

  23. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: measuring the fit and appropriateness of event logs and process models. In: Business Process Management Workshops, vol. 3812, pp. 163–176 (2005)

    Google Scholar 

Download references

Acknowledgements

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Hao Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, TH., van der Aalst, W.M.P. (2023). Unblocking Inductive Miner. In: van der Aa, H., Bork, D., Proper, H.A., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2023 2023. Lecture Notes in Business Information Processing, vol 479. Springer, Cham. https://doi.org/10.1007/978-3-031-34241-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34241-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34240-0

  • Online ISBN: 978-3-031-34241-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy