Abstract
We consider Jaffe’s pumping lemma [J. Jaffe. A necessary and sufficient pumping lemma for regular languages. SIGACT News, Summer, 1978] from a descriptional complexity perspective. Jaffe’s pumping lemma is a necessary and sufficient condition for a language for being regular. In this way we improve a result of [A. Yehudai. A note on the pumping lemma for regular languages. Inform. Proc. Lett., 9(3):135–136, 1979] by showing that there is a regular language over the alphabet \(\varSigma \) of size at least two with deterministic state complexity between p, the minimal pumping constant for Jaffe’s pumping lemma, and \(\sum _{i=0}^{p-1}|\varSigma |^i\). This is in line with recent research on minimal pumping constants for various pumping lemma conducted in [J. Dassow and I. Jecker. Operational complexity and pumping lemmas. Acta Inform., 59:337–355, 2022]. Moreover, we also compare the minimal pumping constant of Jaffe’s pumping lemma with those of other well-known pumping lemmata from the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
A language \(L\subseteq \varSigma ^*\) is suffix closed if \(L=\{\,x\mid yx\in L,\,{ forsome}y\in \varSigma ^*\,\}\), i.e., the word x is a member of L whenever yx is in L, for some \(y\in \varSigma ^*\).
- 2.
Let P be a Boolean predicate. Then \(\langle P\rangle :=1\), if P is true; otherwise \(\langle P\rangle :=0\).
References
Brauer, W.: Automatentheorie: Eine Einführung in die Theorie endlicher Automaten. Leitfäden und Monographien der Informatik, Teubner Stuttgart (1984). (in German)
Dassow, J., Jecker, I.: Operational complexity and pumping lemmas. Acta Inform. 59, 337–355 (2022)
Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley (1978)
Holzer, M., Rauch, C.: More on the descriptional complexity of pumping (März 2023), (in preparation)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Addison-Wesley, Languages and Computation (1979)
Jaffe, J.: A necessary and sufficient pumping lemma for regular languages. SIGACT News 10(2), 48–49 (1978)
Kozen, D.C.: Automata and Computability. Undergraduate Texts in Computer Science. Springer (1997). https://doi.org/10.1007/978-1-4612-1844-9
Nijholt, A.: YABBER–yet another bibliography: Pumping lemma’s. An annotated bibliography of pumping. Bull. EATCS 17, 34–53 (1982)
Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959). https://doi.org/10.1147/rd.32.0114
Yehudai, A.: A note on the pumping lemma for regular languages. Inform. Process. Lett. 9(3), 135–136 (1979)
Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Holzer, M., Rauch, C. (2023). On Jaffe’s Pumping Lemma, Revisited. In: Bordihn, H., Tran, N., Vaszil, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2023. Lecture Notes in Computer Science, vol 13918. Springer, Cham. https://doi.org/10.1007/978-3-031-34326-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-34326-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34325-4
Online ISBN: 978-3-031-34326-1
eBook Packages: Computer ScienceComputer Science (R0)