Skip to main content

On Jaffe’s Pumping Lemma, Revisited

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13918))

Included in the following conference series:

  • 204 Accesses

Abstract

We consider Jaffe’s pumping lemma [J. Jaffe. A necessary and sufficient pumping lemma for regular languages. SIGACT News, Summer, 1978] from a descriptional complexity perspective. Jaffe’s pumping lemma is a necessary and sufficient condition for a language for being regular. In this way we improve a result of [A. Yehudai. A note on the pumping lemma for regular languages. Inform. Proc. Lett., 9(3):135–136, 1979] by showing that there is a regular language over the alphabet \(\varSigma \) of size at least two with deterministic state complexity between p, the minimal pumping constant for Jaffe’s pumping lemma, and \(\sum _{i=0}^{p-1}|\varSigma |^i\). This is in line with recent research on minimal pumping constants for various pumping lemma conducted in [J. Dassow and I. Jecker. Operational complexity and pumping lemmas. Acta Inform., 59:337–355, 2022]. Moreover, we also compare the minimal pumping constant of Jaffe’s pumping lemma with those of other well-known pumping lemmata from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A language \(L\subseteq \varSigma ^*\) is suffix closed if \(L=\{\,x\mid yx\in L,\,{ forsome}y\in \varSigma ^*\,\}\), i.e., the word x is a member of L whenever yx is in L, for some \(y\in \varSigma ^*\).

  2. 2.

    Let P be a Boolean predicate. Then \(\langle P\rangle :=1\), if P is true; otherwise \(\langle P\rangle :=0\).

References

  1. Brauer, W.: Automatentheorie: Eine Einführung in die Theorie endlicher Automaten. Leitfäden und Monographien der Informatik, Teubner Stuttgart (1984). (in German)

    Google Scholar 

  2. Dassow, J., Jecker, I.: Operational complexity and pumping lemmas. Acta Inform. 59, 337–355 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley (1978)

    Google Scholar 

  4. Holzer, M., Rauch, C.: More on the descriptional complexity of pumping (März 2023), (in preparation)

    Google Scholar 

  5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Addison-Wesley, Languages and Computation (1979)

    Google Scholar 

  6. Jaffe, J.: A necessary and sufficient pumping lemma for regular languages. SIGACT News 10(2), 48–49 (1978)

    Google Scholar 

  7. Kozen, D.C.: Automata and Computability. Undergraduate Texts in Computer Science. Springer (1997). https://doi.org/10.1007/978-1-4612-1844-9

  8. Nijholt, A.: YABBER–yet another bibliography: Pumping lemma’s. An annotated bibliography of pumping. Bull. EATCS 17, 34–53 (1982)

    Google Scholar 

  9. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959). https://doi.org/10.1147/rd.32.0114

    Article  MathSciNet  MATH  Google Scholar 

  10. Yehudai, A.: A note on the pumping lemma for regular languages. Inform. Process. Lett. 9(3), 135–136 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holzer, M., Rauch, C. (2023). On Jaffe’s Pumping Lemma, Revisited. In: Bordihn, H., Tran, N., Vaszil, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2023. Lecture Notes in Computer Science, vol 13918. Springer, Cham. https://doi.org/10.1007/978-3-031-34326-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34326-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34325-4

  • Online ISBN: 978-3-031-34326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy