Skip to main content

Point Enclosure Problem for Homothetic Polygons

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2023)

Abstract

In this paper, we investigate the following problem: “given a set \(\mathcal {S}\) of n homothetic polygons, preprocess \(\mathcal {S}\) to efficiently report all the polygons of \(\mathcal {S}\) containing a query point.” A set of polygons is said to be homothetic if each polygon in the set can be obtained from any other polygon of the set using scaling and translating operations. The problem is the counterpart of the homothetic range search problem discussed by Chazelle and Edelsbrunner (Chazelle, B., and Edelsbrunner, H., Linear space data structures for two types of range search. Discrete & Computational Geometry 2, 2 (1987), 113–126). We show that after preprocessing a set of homothetic polygons with constant number of vertices, the queries can be answered in \(O(\log n + k)\) optimal time, where k is the output size. The preprocessing takes \(O(n\log n)\) space and time. We also study the problem in dynamic setting where insertion and deletion operations are also allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting and rectangle stabbing in the pointer machine model. In: Proceedings of the Twenty-Eighth Annual Symposium on Computational Geometry, SoCG 2012, pp. 323–332. Association for Computing Machinery, New York (2012)

    Google Scholar 

  2. Akram, W., Saxena, S.: Dominance for containment problems (2022)

    Google Scholar 

  3. Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, pp. 219–241. Springer, Heidelberg (2008)

    Google Scholar 

  4. Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.: New results on intersection query problems. Comput. J. 40(1), 22–29 (1997)

    Article  Google Scholar 

  5. Chan, T., Nekrich, Y., Rahul, S., Tsakalidis, K.: Orthogonal point location and rectangle stabbing queries in 3-D. J. Comput. Geom. 13(1), 399–428 (2022)

    MathSciNet  Google Scholar 

  6. Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Comput. 15(3), 703–724 (1986)

    Article  MathSciNet  Google Scholar 

  7. Chazelle, B.: Triangulating a simple polygon in linear time. Discret. Comput. Geom. 6(3), 485–524 (1991). https://doi.org/10.1007/BF02574703

    Article  MathSciNet  Google Scholar 

  8. Chazelle, B., Edelsbrunner, H.: Linear space data structures for two types of range search. Discret. Comput. Geom. 2(2), 113–126 (1987). https://doi.org/10.1007/BF02187875

    Article  MathSciNet  Google Scholar 

  9. Chazelle, B., Guibas, L.: Fractional cascading: I. A data structuring technique. Algorithmica 1, 133–162 (1986)

    Google Scholar 

  10. Cheng, S.W., Janardan, R.: Algorithms for ray-shooting and intersection searching. J. Algorithms 13(4), 670–692 (1992)

    Article  MathSciNet  Google Scholar 

  11. Chiang, Y.-J., Tamassia, R.: Dynamic algorithms in computational geometry. Proc. IEEE 80(9), 1412–1434 (1992)

    Article  Google Scholar 

  12. Gupta, P., Janardan, R., Smid, M.: Further results on generalized intersection searching problems: counting, reporting, and dynamization. J. Algorithms 19(2), 282–317 (1995)

    Article  MathSciNet  Google Scholar 

  13. Güting, R.H.: Stabbing C-oriented polygons. Inf. Process. Lett. 16(1), 35–40 (1983)

    Article  MathSciNet  Google Scholar 

  14. Katz, M.J.: 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects. Comput. Geom. 8(6), 299–316 (1997)

    Article  MathSciNet  Google Scholar 

  15. Katz, M.J., Nielsen, F.: On piercing sets of objects. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, pp. 113–121 (1996)

    Google Scholar 

  16. Makris, C., Tsakalidis, A.: Algorithms for three-dimensional dominance searching in linear space. Inf. Process. Lett. 66(6), 277–283 (1998)

    Article  MathSciNet  Google Scholar 

  17. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5(1–4), 215–241 (1990)

    Article  MathSciNet  Google Scholar 

  18. Nielsen, F.: On point covers of C-oriented polygons. Theor. Comput. Sci. 263(1–2), 17–29 (2001)

    Article  MathSciNet  Google Scholar 

  19. Overmars, M.H., Schipper, H., Sharir, M.: Storing line segments in partition trees. BIT Numer. Math. 30(3), 385–403 (1990)

    Article  MathSciNet  Google Scholar 

  20. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, pp. 323–373. Springer, New York (1985)

    Google Scholar 

  21. Saxena, S.: Dominance made simple. Inf. Process. Lett. 109(9), 419–421 (2009)

    Article  MathSciNet  Google Scholar 

  22. Sharir, M.: On k-sets in arrangements of curves and surfaces. Discret. Comput. Geom. 6(4), 593–613 (1991)

    Article  MathSciNet  Google Scholar 

  23. Shi, Q., JaJa, J.: Fast algorithms for 3-D dominance reporting and counting. Int. J. Found. Comput. Sci. 15(04), 673–684 (2004)

    Article  MathSciNet  Google Scholar 

  24. Vaishnavi, V.K.: Computing point enclosures. IEEE Trans. Comput. 31(01), 22–29 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank anonymous referees for careful reading of the manuscript, their comments and suggestions. We believe the suggestions have helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Akram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akram, W., Saxena, S. (2023). Point Enclosure Problem for Homothetic Polygons. In: Hsieh, SY., Hung, LJ., Lee, CW. (eds) Combinatorial Algorithms. IWOCA 2023. Lecture Notes in Computer Science, vol 13889. Springer, Cham. https://doi.org/10.1007/978-3-031-34347-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34347-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34346-9

  • Online ISBN: 978-3-031-34347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy