Abstract
The notion of bisimilarity plays an important role in concurrency theory. It provides formal support to the idea of processes having “equivalent behaviour” and is a powerful tool for model reduction. Furthermore, bisimilarity typically coincides with logical equivalence of an appropriate modal logic enabling model checking to be applied on reduced models. Recently, notions of bisimilarity have been proposed also for models of space, including those based on polyhedra. The latter are central in many domains of application that exploit mesh processing and typically consist of millions of cells, the basic components of face-poset models, discrete representations of polyhedral models. This paper builds on the polyhedral semantics of the Spatial Logic for Closure Spaces (SLCS) for which the geometric spatial model checker PolyLogicA has been developed, that is based on face-poset models. We propose a novel notion of spatial bisimilarity for face-poset models, called ±-bisimilarity. We show that it coincides with logical equivalence induced by SLCS on such models. The latter corresponds to logical equivalence with respect to SLCS on polyhedra which, in turn, coincides with simplicial bisimilarity, a notion of bisimilarity for continuous spaces.
Research partially supported by MUR projects PRIN 2017FTXR7S, “IT-MaTTerS”, PRIN 2020TL3X8X “T-LADIES”, bilateral project between CNR (Italy) and SRNSFG (Georgia) “Model Checking for Polyhedral Logic” (#CNR-22-010), and European Union - Next Generation EU - Italian MUR project PNRR PRI ECS00000017 PRR.AP008.003 “THE - Tuscany Health Ecosystem”. The authors are listed in alphabetical order, as they equally contributed to the work presented in this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available from the VoxLogicA repository at https://github.com/vincenzoml/VoxLogicA.
- 2.
\(\mathbf {v_0},\ldots ,\mathbf {v_d}\) are affinely independent if \(\mathbf {v_1} - \mathbf {v_0}, \ldots ,\mathbf {v_d} - \mathbf {v_0}\) are linearly independent. In particular, this condition implies that \(d \le m\).
- 3.
Note that the colours of the classes have only an illustrative purpose; in particular they have nothing to do with the colours expressing the evaluation function of atomic proposition letters.
- 4.
Recall that partial orders are transitive and reflexive.
References
Aiello, M.: Spatial reasoning: theory and practice. Ph.D. thesis, Institute of Logic, Language and Computation, University of Amsterdam (2002)
Aiello, M.: The topo-approach to spatial representation and reasoning. AIIA NOTIZIE (4) (2003)
Alur, R.: Formal verification of hybrid systems. In: Proceedings of the 11th International Conference on Embedded Software, EMSOFT 2011, part of the Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, 9–14 October 2011, pp. 273–278. ACM (2011). https://doi.org/10.1145/2038642.2038685
Alur, R., Giacobbe, M., Henzinger, T.A., Larsen, K.G., Mikučionis, M.: Continuous-time models for system design and analysis. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 452–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_22
Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adaptive distributed monitors of spatial properties for cyber-physical systems. J. Syst. Softw. 175, 110908 (2021). https://doi.org/10.1016/j.jss.2021.110908
Balovnev, O.T., et al.: The story of the GeoToolKit - an object-oriented geodatabase kernel system. GeoInformatica 8(1), 5–47 (2004). https://doi.org/10.1023/B:GEIN.0000007723.77851.8f
Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transfer 22(2), 195–217 (2019). https://doi.org/10.1007/s10009-019-00511-9
Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N., Semini, L. (eds.) 9th IEEE/ACM International Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, 17–21 May 2021, pp. 1–12. IEEE (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007
Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865, pp. 85–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5_7
Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_16
van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I., Benthem, J.V. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_5
Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.: Geometric Model checking of continuous space. Log. Methods Comput. Sci. 18(4), 7:1–7:38 (2022). https://lmcs.episciences.org/10348. https://doi.org/10.46298/LMCS-18(4:7)2022. ISSN 1860-5974
Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided refinement of template polyhedra. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 589–606. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_34
Breunig, M., et al.: Geospatial data management research: Progress and future directions. ISPRS Int. J. Geo Inf. 9(2), 95 (2020). https://doi.org/10.3390/ijgi9020095
Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988). https://doi.org/10.1016/0304-3975(88)90098-9
Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–235 (2003). https://doi.org/10.1016/S0890-5401(03)00137-8
Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: Wegman, M.N., Reps, T.W. (eds.) POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Massachusetts, USA, 19–21 January 2000, pp. 365–377. ACM (2000). https://doi.org/10.1145/325694.325742
Chrschn: A triangle mesh of dolphin (2007). https://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png. Accessed 7 Feb 2023
Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: Back-and-forth in space: on logics and bisimilarity in closure spaces. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey From Process Algebra via Timed Automata to Model Learning. LNCS, vol. 13560, pp. 98–115. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8_6
Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for statistical spatio-temporal model checking of bike sharing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_46
Ciancia, V., Gabelaia, D., Latella, D., Massink, M., de Vink, E.P.: On bisimilarity for polyhedral models and SLCS - preliminary version. Technical report. ISTI-TR-2022/018, CNR-ISTI (2023). https://doi.org/10.32079/ISTI-TR-2023/003
Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model checking of vehicular movement in public transport systems. Int. J. Softw. Tools Technol. Transfer 20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8
Ciancia, V., Groote, J., Latella, D., Massink, M., de Vink, E.: Minimisation of spatial models using branching bisimilarity. In: Chechik, M., Katoen, J.P., Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 263–281. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27481-7_16
Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7_18
Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. Log. Methods Comput. Sci. 12(4) (2016). https://doi.org/10.2168/LMCS-12(4:2)2016
Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal properties of bike-sharing systems. In: 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASO Workshops 2015, Cambridge, MA, USA, 21–25 September 2015, pp. 74–79. IEEE Computer Society (2015). https://doi.org/10.1109/SASOW.2015.17
Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilarity for quasi-discrete closure spaces (2023). https://arxiv.org/abs/2301.11634
De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM 42(2), 458–487 (1995). https://doi.org/10.1145/201019.201032
Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_17
Galton, A.: Discrete mereotopology. In: Calosi, C., Graziani, P. (eds.) Mereology and the Sciences. SL, vol. 371, pp. 293–321. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05356-1_11
Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems reachability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 215–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1_16
van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.233556
Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(mlogn) algorithm for computing stuttering equivalence and branching bisimulation. ACM Trans. Comput. Log. 18(2), 13:1–13:34 (2017). https://doi.org/10.1145/3060140
Hansen, H., Kupke, C., Pacuit, E.: Neighbourhood structures: bisimilarity and basic model theory. Log. Methods Comput. Sci. 5(2) (2009). https://lmcs.episciences.org/1167
Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems, pp. 265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5_13
Henzinger, T.A., Ho, P.-H.: HyTech: the cornell hybrid technology tool. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–293. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3_14
Levine, J.A., Paulsen, R.R., Zhang, Y.: Mesh processing in medical-image analysis - a tutorial. IEEE Comput. Graphics Appl. 32(5), 22–28 (2012). https://doi.org/10.1109/MCG.2012.91
Linker, S., Papacchini, F., Sevegnani, M.: Analysing spatial properties on neighbourhood spaces. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, 24–28 August 2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 66:1–66:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.66
Linker, S., Papacchini, F., Sevegnani, M.: Finite models for a spatial logic with discrete and topological path operators. In: Bonchi, F., Puglisi, S.J. (eds.) 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, 23–27 August 2021, Tallinn, Estonia. LIPIcs, vol. 202, pp. 72:1–72:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.72
Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model. CoRR (2021). https://arxiv.org/abs/2105.08708
Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-satisfaction in bicycle sharing systems. In: IEEE 18th International Conference on Intelligent Transportation Systems, ITSC 2015, Gran Canaria, Spain, 15–18 September 2015, pp. 1363–1370. IEEE (2015). https://doi.org/10.1109/ITSC.2015.224
McKinsey, J., Tarski, A.: The algebra of topology. Ann. Math. 45, 141–191 (1944). https://doi.org/10.2307/1969080
Milner, R.: Communication and Concurrency. PHI Series in Computer Science. Prentice Hall (1989)
Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, Cambridge (2009)
Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods Comput. Sci. 14(4) (2018). https://doi.org/10.23638/LMCS-14(4:2)2018
Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_14
Smyth, M.B., Webster, J.: Discrete spatial models. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 713–798. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_12
Tsigkanos, C., Nenzi, L., Loreti, M., Garriga, M., Dustdar, S., Ghezzi, C.: Inferring analyzable models from trajectories of spatially-distributed internet of things. In: 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 100–106 (2019). https://doi.org/10.1109/SEAMS.2019.00021
Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: Ariadne: topology aware adaptive security for cyber-physical systems. In: Bertolino, A., Canfora, G., Elbaum, S.G. (eds.) 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, 16–24 May 2015, vol. 2, pp. 729–732. IEEE Computer Society (2015). https://doi.org/10.1109/ICSE.2015.234
Čech, E.: Topological spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp. 233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience Publishers, John Wiley & Sons, Prague/London-New York-Sydney (1966). Revised edition by Zdeněk Frolíc and Miroslav Katětov. Scientific editor, Vlastimil Pták. Editor of the English translation, Charles O. Junge. MR0211373
Acknowledgements
We thank Nick Bezhanishvili, Gianluca Grilletti and Jan Friso Groote for interesting discussions concerning various aspects of polyhedral model-checking, bisimulations and model reduction techniques.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Ciancia, V., Gabelaia, D., Latella, D., Massink, M., de Vink, E.P. (2023). On Bisimilarity for Polyhedral Models and SLCS. In: Huisman, M., Ravara, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2023. Lecture Notes in Computer Science, vol 13910. Springer, Cham. https://doi.org/10.1007/978-3-031-35355-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-35355-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35354-3
Online ISBN: 978-3-031-35355-0
eBook Packages: Computer ScienceComputer Science (R0)