Skip to main content

Construct Fine-Grained Geospatial Knowledge Graph

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2023 International Workshops (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13922))

Included in the following conference series:

  • 473 Accesses

Abstract

In this paper, we propose the fine-grained geospatial knowledge graph (FineGeoKG), which can capture the neighboring relations between geospatial objects. We call such neighboring relations strong geospatial relations (SGRs) and define six types of SGRs. In FineGeoKG, the vertices (or entities) are geospatial objects. The edges (or relations) can have “sgr” labels together with properties, which are used to quantify SGRs in both topological and directional aspects. FineGeoKG is different from WorldKG, Yago2Geo, and other existing geospatial knowledge graphs, since its edges can capture the spatial coherence among geospatial objects. To construct FineGeoKG efficiently, the crucial problem is to find out SGRs. We improve the existing geospatial interlinking algorithm in order to find out SGRs faster. We conduct experiments on the real datasets and the experimental results show that the proposed algorithm is more efficient than the baseline algorithms. We also demonstrate the usefulness of FineGeoKG by presenting the results of complicated spatial queries which focus on structural and semantic information. Such queries can help researchers (for example, ecologists) find groups of objects following specific spatial patterns.

Supported by Beijing Key Laboratory of Knowledge Engineering for Materials, State Key Laboratory of Precision Blasting (Jianghan University), and Key Laboratory of AI and Information Processing (Hechi University).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The angles \(\alpha _s\) and \(\alpha _e\) indicate the directions of the endpoints on the shared border.

  2. 2.

    The intersection line is the straight line passing through the intersections of \(o_x\) and \(o_y\).

  3. 3.

    A polyline consists of a group of consecutive segments. A segment of \(o_x\) and a segment of \(o_y\) intersect at a point.

References

  1. Dsouza, A., Tempelmeier, N., Yu, R., Gottschalk, S., Demidova, E.: Worldkg: a world-scale geographic knowledge graph. In: CIKM, pp. 4475–4484 (2021)

    Google Scholar 

  2. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., De Melo, G., Weikum, G.: Yago2: exploring and querying world knowledge in time, space, context, and many languages. In: WWW, pp. 229–232 (2011)

    Google Scholar 

  3. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Karalis, N., Mandilaras, G., Koubarakis, M.: Extending the YAGO2 knowledge graph with precise geospatial knowledge. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 181–197. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_12

    Chapter  Google Scholar 

  5. Kyzirakos, K., et al.: Geotriples: transforming geospatial data into RDF graphs using R2RML and RML mappings. J. Web Semant. 52, 16–32 (2018)

    Article  Google Scholar 

  6. Li, Y., Zhang, Y.: A new paradigm of remote sensing image interpretation by coupling knowledge graph and deep learning. J. Wuhan Univ. 47(8), 1176–1190 (2022)

    Google Scholar 

  7. Liagouris, J., Mamoulis, N., Bouros, P., Terrovitis, M.: An effective encoding scheme for spatial RDF data. PVLDB 7(12), 1271–1282 (2014)

    Google Scholar 

  8. Liu, J., et al.: The construction of knowledge graph towards multi-source geospatial data. J. Earth Inf. Sci. 22(7), 1476–1486 (2020)

    MathSciNet  Google Scholar 

  9. Liu, J., Liu, H., Chen, X., Guo, X., Zhu, X.: Construction of knowledge graph based on geo-spatial data. Chin. J. Inf. 34(11), 29–36 (2020)

    Google Scholar 

  10. Mamoulis, N., Papadias, D.: Multiway spatial joins. TODS 26(4), 424–475 (2001)

    Article  MATH  Google Scholar 

  11. Papadakis, G., Mandilaras, G., Mamoulis, N., Koubarakis, M.: Progressive, holistic geospatial interlinking. In: WWW, pp. 833–844 (2021)

    Google Scholar 

  12. Patroumpas, K., Skoutas, D., Mandilaras, G., Giannopoulos, G., Athanasiou, S.: Exposing points of interest as linked geospatial data. In: SSTD, pp. 21–30 (2019)

    Google Scholar 

  13. Punjani, D., et al.: Template-based question answering over linked geospatial data. In: Proceedings of the 12th Workshop on Geographic Information Retrieval, pp. 1–10 (2018)

    Google Scholar 

  14. Saveta, T., Fundulaki, I., Flouris, G., Ngonga-Ngomo, A.-C.: \(SPgen \): a benchmark generator for spatial link discovery tools. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 408–423. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_24

    Chapter  Google Scholar 

  15. Sun, K., Hu, Y., Song, J., Zhu, Y.: Aligning geographic entities from historical maps for building knowledge graphs. Int. J. Geogr. Inf. Sci. 35(10), 2078–2107 (2021)

    Article  Google Scholar 

  16. Sun, Y., Sarwat, M.: A generic database indexing framework for large-scale geographic knowledge graphs. In: ACM SIGSPATIAL, pp. 289–298 (2018)

    Google Scholar 

  17. Sun, Y., Sarwat, M.: A spatially-pruned vertex expansion operator in the NEO4J graph database system. GeoInformatica 23(3), 397–423 (2019)

    Article  Google Scholar 

  18. Sun, Y., Yu, J., Sarwat, M.: Demonstrating spindra: a geographic knowledge graph management system. In: ICDE, pp. 2044–2047. IEEE (2019)

    Google Scholar 

  19. Wang, D., Zou, L., Feng, Y., Shen, X., Tian, J., Zhao, D.: S-store: an engine for large RDF graph integrating spatial information. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013. LNCS, vol. 7826, pp. 31–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37450-0_3

    Chapter  Google Scholar 

  20. Wang, X., Zou, L., Wang, C., Peng, P., Feng, Z.: Research on knowledge graph data management: a survey, pp. 2139–2174 (2019)

    Google Scholar 

  21. Zou, L., Özsu, M.T., Chen, L., Shen, X., Huang, R., Zhao, D.: gStore: a graph-based SPARQL query engine. VLDB J. 23(4), 565–590 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Laboratory of AI and Information Processing (Hechi University) Education Department of Guangxi Zhuang Autonomous Region (2022GXZDSY007), National Natural Science Foundation of China (No. 61602031), Fundamental Research Funds for the Central Universities (FRF-IDRY-19-023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Guo , Jing Zhao or Qiping Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, B., Guo, X., Wu, Z., Zhao, J., Zou, Q. (2023). Construct Fine-Grained Geospatial Knowledge Graph. In: El Abbadi, A., et al. Database Systems for Advanced Applications. DASFAA 2023 International Workshops. DASFAA 2023. Lecture Notes in Computer Science, vol 13922. Springer, Cham. https://doi.org/10.1007/978-3-031-35415-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35415-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35414-4

  • Online ISBN: 978-3-031-35415-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy