Abstract
The identification and categorization of glomerular diseases are crucial in the diagnosis of numerous renal diseases. This research carried out a comprehensive investigation to establish the optimal group of characteristics for depicting glomerular pathological images. Our feature extraction methodology includes clinical data and deep features. In addition, we compared four classifiers to support the specialist defining a renal pathology diagnosis. The study found that by combining clinical information with deep features, a high level of accuracy (95.98%) and agreement (98.93%) was achieved using the Random Forest classifier. This suggests that the combination of these two types of data makes it easier to correctly classify different diseases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Araújo, I.C., Schnitman, L., Duarte, A.A., dos Santos, W.: Automated detection of segmental glomerulosclerosis in kidney histopathology. In: XIII Brazilian Congress on Computational Intelligence, p. 12 (2017)
Claro, M., et al.: An hybrid feature space from texture information and transfer learning for glaucoma classification. J. Vis. Commun. Image Represent. 64, 102597 (2019), https://www.sciencedirect.com/science/article/pii/S1047320319302184
Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hermsen, M., de Bel, T., Den Boer, M., Steenbergen, E.J., Kers, J., Florquin, S., Roelofs, J.J., Stegall, M.D., Alexander, M.P., Smith, B.H., et al.: Deep learning-based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30(10), 1968–1979 (2019)
Huo, Y., Deng, R., Liu, Q., Fogo, A.B., Yang, H.: Ai applications in renal pathology. Kidney International (2021)
Kannan, S., Morgan, L.A., Liang, B., Cheung, M.G., Lin, C.Q., Mun, D., Nader, R.G., Belghasem, M.E., Henderson, J.M., Francis, J.M., Chitalia, V.C., Kolachalama, V.B.: Segmentation of glomeruli within trichrome images using deep learning. Kidney Int. Rep. 4(7), 955–962 (2019)
Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)
Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics, pp. 159–174 (1977)
Moura, N., Veras, R., Aires, K., Machado, V., Silva, R., Araújo, F., Claro, M.: ABCD rule and pre-trained CNNs for melanoma diagnosis. Multimedia Tools Appl. 78(6), 6869–6888 (2018). https://doi.org/10.1007/s11042-018-6404-8
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Santos, J.D., et al.: A hybrid of deep and textural features to differentiate glomerulosclerosis and minimal change disease from glomerulus biopsy images. Biomed. Signal Process. Control 70, 103020 (2021) https://www.sciencedirect.com/science/article/pii/S1746809421006170
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015), http://arxiv.org/abs/1409.1556
Sodré, F.L., Costa, J.C.B., Lima, J.C.C.: Evaluation of renal function and damage: a laboratorial challenge. J. Brasileiro de Patologia e Medicina Laboratorial 43, 329–337 (2007)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826 (2016)
Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 PMLR (2019)
Uchino, E., et al.: Classification of glomerular pathological findings using deep learning and nephrologist-AI collective intelligence approach. Int. J. Med. Inf. 141, 104231 (2020)
Vogado, L., et al.: Diagnosis of leukaemia in blood slides based on a fine-tuned and highly generalisable deep learning model. Sensors 21(9) (2021). https://www.mdpi.com/1424-8220/21/9/2989
Zheng, Z., et al.: Deep learning-based artificial intelligence system for automatic assessment of glomerular pathological findings in lupus nephritis. Diagnostics 11(11) (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Silva, L. et al. (2023). Using Clinical Data and Deep Features in Renal Pathologies Classification. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-35507-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-35507-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35506-6
Online ISBN: 978-3-031-35507-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)