Skip to main content

Using Clinical Data and Deep Features in Renal Pathologies Classification

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

The identification and categorization of glomerular diseases are crucial in the diagnosis of numerous renal diseases. This research carried out a comprehensive investigation to establish the optimal group of characteristics for depicting glomerular pathological images. Our feature extraction methodology includes clinical data and deep features. In addition, we compared four classifiers to support the specialist defining a renal pathology diagnosis. The study found that by combining clinical information with deep features, a high level of accuracy (95.98%) and agreement (98.93%) was achieved using the Random Forest classifier. This suggests that the combination of these two types of data makes it easier to correctly classify different diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Araújo, I.C., Schnitman, L., Duarte, A.A., dos Santos, W.: Automated detection of segmental glomerulosclerosis in kidney histopathology. In: XIII Brazilian Congress on Computational Intelligence, p. 12 (2017)

    Google Scholar 

  2. Claro, M., et al.: An hybrid feature space from texture information and transfer learning for glaucoma classification. J. Vis. Commun. Image Represent. 64, 102597 (2019), https://www.sciencedirect.com/science/article/pii/S1047320319302184

  3. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hermsen, M., de Bel, T., Den Boer, M., Steenbergen, E.J., Kers, J., Florquin, S., Roelofs, J.J., Stegall, M.D., Alexander, M.P., Smith, B.H., et al.: Deep learning-based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30(10), 1968–1979 (2019)

    Article  Google Scholar 

  6. Huo, Y., Deng, R., Liu, Q., Fogo, A.B., Yang, H.: Ai applications in renal pathology. Kidney International (2021)

    Google Scholar 

  7. Kannan, S., Morgan, L.A., Liang, B., Cheung, M.G., Lin, C.Q., Mun, D., Nader, R.G., Belghasem, M.E., Henderson, J.M., Francis, J.M., Chitalia, V.C., Kolachalama, V.B.: Segmentation of glomeruli within trichrome images using deep learning. Kidney Int. Rep. 4(7), 955–962 (2019)

    Article  Google Scholar 

  8. Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)

    Google Scholar 

  9. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics, pp. 159–174 (1977)

    Google Scholar 

  10. Moura, N., Veras, R., Aires, K., Machado, V., Silva, R., Araújo, F., Claro, M.: ABCD rule and pre-trained CNNs for melanoma diagnosis. Multimedia Tools Appl. 78(6), 6869–6888 (2018). https://doi.org/10.1007/s11042-018-6404-8

    Article  Google Scholar 

  11. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  12. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  13. Santos, J.D., et al.: A hybrid of deep and textural features to differentiate glomerulosclerosis and minimal change disease from glomerulus biopsy images. Biomed. Signal Process. Control 70, 103020 (2021) https://www.sciencedirect.com/science/article/pii/S1746809421006170

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015), http://arxiv.org/abs/1409.1556

  15. Sodré, F.L., Costa, J.C.B., Lima, J.C.C.: Evaluation of renal function and damage: a laboratorial challenge. J. Brasileiro de Patologia e Medicina Laboratorial 43, 329–337 (2007)

    Google Scholar 

  16. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826 (2016)

    Google Scholar 

  17. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 PMLR (2019)

    Google Scholar 

  18. Uchino, E., et al.: Classification of glomerular pathological findings using deep learning and nephrologist-AI collective intelligence approach. Int. J. Med. Inf. 141, 104231 (2020)

    Article  Google Scholar 

  19. Vogado, L., et al.: Diagnosis of leukaemia in blood slides based on a fine-tuned and highly generalisable deep learning model. Sensors 21(9) (2021). https://www.mdpi.com/1424-8220/21/9/2989

  20. Zheng, Z., et al.: Deep learning-based artificial intelligence system for automatic assessment of glomerular pathological findings in lupus nephritis. Diagnostics 11(11) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiara Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, L. et al. (2023). Using Clinical Data and Deep Features in Renal Pathologies Classification. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-35507-3_14

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy