Abstract
Social robots are devoted to interacting and communicating with humans. Traditionally, the interaction capabilities of social robots are limited because the dialogues they can maintain are perceived as predictable, repetitive, and unnatural. This can lead the user to lose interest in the robot. If we want to bet on a successful and long coexistence of humans and robots, it is necessary to provide robots with more varied speeches that can be easily adapted to the users’ needs. In this contribution, we propose a methodology that uses social media mining techniques to find topics that might interest a user. Then, using machine learning techniques, we create the robot’s verbal communication. This methodology, implemented in our social robot Mini, uses three types of deep learning models for natural language processing: a summarization model, a long-form query-answer model, and a generative model. We rely on pre-trained models that have been integrated into Mini, allowing our robot to maintain conversations about different topics that change dynamically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bakar, A.A., Othman, Z.A., Shuib, N.L.M.: Building a new taxonomy for data discretization techniques. In: 2009 2nd Conference on Data Mining and Optimization, pp. 132–140. IEEE (2009)
Bavarian, M., Jiang, A., Jun, H., Pondé, H.: New gpt-3 capabilities: Edit & insert (2022). https://openai.com/blog/gpt-3-edit-insert/
Bertó Giménez, A., Fernández-Rodicio, E., Castro-González, A., Salichs, M.A.: Do you want to make your robot warmer? make it more reactive! IEEE Transactions on Cognitive and Developmental Systems, pp. 1–1 (2022). https://doi.org/10.1109/TCDS.2022.3222038
Blagojevic, V.: Long-form qa beyond eli5: an updated dataset and approach (2022). towardsdatascience.com/long-form-qa-beyond-eli5-an-updated-dataset-and-approach-319cb841aabb
Bohus, D., Rudnicky, A.I.: The RavenClaw dialog management framework: architecture and systems. Comput. Speech Lang. 23(3), 332–361 (2009)
Budzianowski, P., Casanueva, I., Tseng, B.H., Gasic, M.: Towards end-to-end multi-domain dialogue modelling. Technical Report CUED/F-INFENG/TR.706 (2018)
Cramer, H., Büttner, S.: Things that tweet, check-in and are befriended.: two explorations on robotics & social media. In: Proceedings of the 6th International Conference On Human-robot Interaction - HRI ’11. p. 125. ACM Press (2011). https://doi.org/10.1145/1957656.1957693, http://portal.acm.org/citation.cfm?doid=1957656.1957693
Cuayáhuitl, H., Yu, S., Williamson, A., Carse, J.: Deep reinforcement learning for multi-domain dialogue systems. arXiv preprint arXiv:1611.08675 (2016)
Van de Kauter, M., Coorman, G., Lefever, E., Desmet, B., Macken, L., Hoste, V.: LeTs preprocess: the multilingual LT3 linguistic preprocessing toolkit. Comput. Ling. Netherlands J. 3, 103–120 (2013)
Kiefer, B., Welker, A., Biwer, C.: VOnDA: A framework for ontology-based dialogue management. arXiv:1910.00340 [cs] (2019-10-01). http://arxiv.org/abs/1910.00340
Lee, C., Jung, S., Kim, S., Lee, G.G.: Example-based dialog modeling for practical multi-domain dialog system. Speech Communication 51(5), 466–484 (2009-05). https://doi.org/10.1016/j.specom.2009.01.008, https://linkinghub.elsevier.com/retrieve/pii/S0167639309000107
Leviathan, Y., Matias, Y.: Google duplex: An AI system for accomplishing real-world tasks over the phone (2018-05-08).https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
Li, X., Chen, Y.N., Li, L., Gao, J., Celikyilmaz, A.: End-to-end task-completion neural dialogue systems. arXiv preprint arXiv:1703.01008 (2017)
Lison, P.: A hybrid approach to dialogue management based on probabilistic rules. Comput. Speech Lang. 34(1), 232–255 (2015-11). https://doi.org/10.1016/j.csl.2015.01.001, https://linkinghub.elsevier.com/retrieve/pii/S0885230815000029
Liu, B., Lane, I.: An end-to-end trainable neural network model with belief tracking for task-oriented dialog. arXiv preprint arXiv:1708.05956 (2017)
Ma, X., Yang, X., Zhao, S., Fu, C.W., Lan, Z., Pu, Y.: Using social media platforms for human-robot interaction in domestic environment. Int. J. Human-Comput. Interact. 30(8), 627–642 (2014-08-03). https://doi.org/10.1080/10447318.2014.907011, http://www.tandfonline.com/doi/abs/10.1080/10447318.2014.907011
Mavridis, N., Petychakis, M., Tsamakos, A., Toulis, P., Emami, S., Kazmi, W., Datta, C., BenAbdelkader, C., Tanoto, A.: FaceBots: steps towards enhanced long-term human-robot interaction by utilizing and publishing online social information. Paladyn, J. Behav. Robot. 1(3), 169–178 (2010)
Milhorat, P., Lala, D., Inoue, K., Zhao, T., Ishida, M., Takanashi, K., Nakamura, S., Kawahara, T.: A conversational dialogue manager for the humanoid robot ERICA. In: Eskenazi, M., Devillers, L., Mariani, J. (eds.) Advanced Social Interaction with Agents. LNEE, vol. 510, pp. 119–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92108-2_14
Onorati, T., Díaz, P.: Giving meaning to tweets in emergency situations: a semantic approach for filtering and visualizing social data. Springerplus 5(1), 1–17 (2016). https://doi.org/10.1186/s40064-016-3384-x
Onorati, T., Díaz, P., Carrion, B.: From social networks to emergency operation centers: a semantic visualization approach. Futur. Gener. Comput. Syst. 95, 829–840 (2019)
OpenAI: Chatgpt: Optimizing language models for dialogue (2022). https://openai.com/blog/chatgpt/
Peltason, J., Wrede, B.: Pamini: A framework for assembling mixed-initiative human-robot interaction from generic interaction patterns. In: Proceedings of the SIGDIAL 2010 Conference, pp. 229–232. Association for Computational Linguistics (2010-09), https://www.aclweb.org/anthology/W10-4341
Rothe, S., Narayan, S., Severyn, A.: Leveraging pre-trained checkpoints for sequence generation tasks. Trans. Assoc. Comput. Linguist. 8, 264–280 (2020)
Saha, T., Saha, S., Bhattacharyya, P.: Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning. PLOS ONE 15(7), e0235367 (2020-07-02). https://doi.org/10.1371/journal.pone.0235367, https://dx.plos.org/10.1371/journal.pone.0235367
Salichs, M.A., et al.: Mini: A new social robot for the elderly. International J. Social Robot. 12(6), 1231–1249 (2020-12). https://doi.org/10.1007/s12369-020-00687-0, http://link.springer.com/10.1007/s12369-020-00687-0
Takagi, K., Rzepka, R., Araki, K.: Just keep tweeting, dear: web-mining methods for helping a social robot understand user needs. In: 2011 AAAI Spring Symposium Series (2011)
Wahde, M.: A dialogue manager for task-oriented agents based on dialogue building-blocks and generic cognitive processing. In: 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–8. IEEE (2019-07). https://doi.org/10.1109/INISTA.2019.8778354, https://ieeexplore.ieee.org/document/8778354/
Wessel, M., Acharya, G., Carpenter, J., Yin, M.: An ontology-based dialogue management system for virtual personal assistants | SRI international. In: International Workshop on Spoken Dialogue Systems Technology, p. 12 (2017), https://www.sri.com/work/publications/ontology-based-dialogue-management-system-virtual-personal-assistants
Westlund, O.: Mobile news. Digital J. 1(1), 6–26 (2013). https://doi.org/10.1080/21670811.2012.740273, https://doi.org/10.1080/21670811.2012.740273
Xu, H., Peng, H., Xie, H., Cambria, E., Zhou, L., Zheng, W.: End-to-end latent-variable task-oriented dialogue system with exact log-likelihood optimization. World Wide Web 23(3), 1989–2002 (2020-05). https://doi.org/10.1007/s11280-019-00688-8, http://link.springer.com/10.1007/s11280-019-00688-8
Xu, L., Zhou, Q., Gong, K., Liang, X., Tang, J., Lin, L.: End-to-end knowledge-routed relational dialogue system for automatic diagnosis. Proceedings of the AAAI Conference on Artificial Intelligence 33, 7346–7353 (2019-07-17). https://doi.org/10.1609/aaai.v33i01.33017346, https://wvvw.aaai.org/ojs/index.php/AAAI/article/view/4722
Zafarani, R., Abbasi, M.A., Liu, H.: Social media mining: an introduction. Cambridge University Press (2014)
Zeller, F., Smith, D.H., Au Duong, J., Mager, A.: Social media in human–robot interaction. Int. J. Social Robot.(2019-07-03). https://doi.org/10.1007/s12369-019-00573-4, http://link.springer.com/10.1007/s12369-019-00573-4
Zhao, T.: Reinforest: Multi-domain dialogue management using hierarchical policies and knowledge ontology (2016)
Acknowledgements
This work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M (“Fostering Young Doctors Research”, SMM4HRI-CM-UC3M), and in the context of the V PRICIT (Research and Technological Innovation Regional Programme). This work has been partially supported by the projects sense2MakeSense, funded by the Spanish State Agency of Research (PID2019-109388GB-I00), and IntCare-CM, funded by the regional government of the Community of Madrid.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Onorati, T., Castro-González, Á., Díaz, P., Fernández-Rodicio, E. (2023). A Methodology for Personalized Dialogues Between Social Robots and Users Based on Social Media. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14051. Springer, Cham. https://doi.org/10.1007/978-3-031-35894-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-35894-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35893-7
Online ISBN: 978-3-031-35894-4
eBook Packages: Computer ScienceComputer Science (R0)