Skip to main content

A Methodology for Personalized Dialogues Between Social Robots and Users Based on Social Media

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2023)

Abstract

Social robots are devoted to interacting and communicating with humans. Traditionally, the interaction capabilities of social robots are limited because the dialogues they can maintain are perceived as predictable, repetitive, and unnatural. This can lead the user to lose interest in the robot. If we want to bet on a successful and long coexistence of humans and robots, it is necessary to provide robots with more varied speeches that can be easily adapted to the users’ needs. In this contribution, we propose a methodology that uses social media mining techniques to find topics that might interest a user. Then, using machine learning techniques, we create the robot’s verbal communication. This methodology, implemented in our social robot Mini, uses three types of deep learning models for natural language processing: a summarization model, a long-form query-answer model, and a generative model. We rely on pre-trained models that have been integrated into Mini, allowing our robot to maintain conversations about different topics that change dynamically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://huggingface.co/mrm8488/bert2bert_shared-spanish-finetuned-summarization.

  2. 2.

    https://www.reddit.com/.

References

  1. Bakar, A.A., Othman, Z.A., Shuib, N.L.M.: Building a new taxonomy for data discretization techniques. In: 2009 2nd Conference on Data Mining and Optimization, pp. 132–140. IEEE (2009)

    Google Scholar 

  2. Bavarian, M., Jiang, A., Jun, H., Pondé, H.: New gpt-3 capabilities: Edit & insert (2022). https://openai.com/blog/gpt-3-edit-insert/

  3. Bertó Giménez, A., Fernández-Rodicio, E., Castro-González, A., Salichs, M.A.: Do you want to make your robot warmer? make it more reactive! IEEE Transactions on Cognitive and Developmental Systems, pp. 1–1 (2022). https://doi.org/10.1109/TCDS.2022.3222038

  4. Blagojevic, V.: Long-form qa beyond eli5: an updated dataset and approach (2022). towardsdatascience.com/long-form-qa-beyond-eli5-an-updated-dataset-and-approach-319cb841aabb

    Google Scholar 

  5. Bohus, D., Rudnicky, A.I.: The RavenClaw dialog management framework: architecture and systems. Comput. Speech Lang. 23(3), 332–361 (2009)

    Article  Google Scholar 

  6. Budzianowski, P., Casanueva, I., Tseng, B.H., Gasic, M.: Towards end-to-end multi-domain dialogue modelling. Technical Report CUED/F-INFENG/TR.706 (2018)

    Google Scholar 

  7. Cramer, H., Büttner, S.: Things that tweet, check-in and are befriended.: two explorations on robotics & social media. In: Proceedings of the 6th International Conference On Human-robot Interaction - HRI ’11. p. 125. ACM Press (2011). https://doi.org/10.1145/1957656.1957693, http://portal.acm.org/citation.cfm?doid=1957656.1957693

  8. Cuayáhuitl, H., Yu, S., Williamson, A., Carse, J.: Deep reinforcement learning for multi-domain dialogue systems. arXiv preprint arXiv:1611.08675 (2016)

  9. Van de Kauter, M., Coorman, G., Lefever, E., Desmet, B., Macken, L., Hoste, V.: LeTs preprocess: the multilingual LT3 linguistic preprocessing toolkit. Comput. Ling. Netherlands J. 3, 103–120 (2013)

    Google Scholar 

  10. Kiefer, B., Welker, A., Biwer, C.: VOnDA: A framework for ontology-based dialogue management. arXiv:1910.00340 [cs] (2019-10-01). http://arxiv.org/abs/1910.00340

  11. Lee, C., Jung, S., Kim, S., Lee, G.G.: Example-based dialog modeling for practical multi-domain dialog system. Speech Communication 51(5), 466–484 (2009-05). https://doi.org/10.1016/j.specom.2009.01.008, https://linkinghub.elsevier.com/retrieve/pii/S0167639309000107

  12. Leviathan, Y., Matias, Y.: Google duplex: An AI system for accomplishing real-world tasks over the phone (2018-05-08).https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

  13. Li, X., Chen, Y.N., Li, L., Gao, J., Celikyilmaz, A.: End-to-end task-completion neural dialogue systems. arXiv preprint arXiv:1703.01008 (2017)

  14. Lison, P.: A hybrid approach to dialogue management based on probabilistic rules. Comput. Speech Lang. 34(1), 232–255 (2015-11). https://doi.org/10.1016/j.csl.2015.01.001, https://linkinghub.elsevier.com/retrieve/pii/S0885230815000029

  15. Liu, B., Lane, I.: An end-to-end trainable neural network model with belief tracking for task-oriented dialog. arXiv preprint arXiv:1708.05956 (2017)

  16. Ma, X., Yang, X., Zhao, S., Fu, C.W., Lan, Z., Pu, Y.: Using social media platforms for human-robot interaction in domestic environment. Int. J. Human-Comput. Interact. 30(8), 627–642 (2014-08-03). https://doi.org/10.1080/10447318.2014.907011, http://www.tandfonline.com/doi/abs/10.1080/10447318.2014.907011

  17. Mavridis, N., Petychakis, M., Tsamakos, A., Toulis, P., Emami, S., Kazmi, W., Datta, C., BenAbdelkader, C., Tanoto, A.: FaceBots: steps towards enhanced long-term human-robot interaction by utilizing and publishing online social information. Paladyn, J. Behav. Robot. 1(3), 169–178 (2010)

    Google Scholar 

  18. Milhorat, P., Lala, D., Inoue, K., Zhao, T., Ishida, M., Takanashi, K., Nakamura, S., Kawahara, T.: A conversational dialogue manager for the humanoid robot ERICA. In: Eskenazi, M., Devillers, L., Mariani, J. (eds.) Advanced Social Interaction with Agents. LNEE, vol. 510, pp. 119–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92108-2_14

    Chapter  Google Scholar 

  19. Onorati, T., Díaz, P.: Giving meaning to tweets in emergency situations: a semantic approach for filtering and visualizing social data. Springerplus 5(1), 1–17 (2016). https://doi.org/10.1186/s40064-016-3384-x

    Article  Google Scholar 

  20. Onorati, T., Díaz, P., Carrion, B.: From social networks to emergency operation centers: a semantic visualization approach. Futur. Gener. Comput. Syst. 95, 829–840 (2019)

    Article  Google Scholar 

  21. OpenAI: Chatgpt: Optimizing language models for dialogue (2022). https://openai.com/blog/chatgpt/

  22. Peltason, J., Wrede, B.: Pamini: A framework for assembling mixed-initiative human-robot interaction from generic interaction patterns. In: Proceedings of the SIGDIAL 2010 Conference, pp. 229–232. Association for Computational Linguistics (2010-09), https://www.aclweb.org/anthology/W10-4341

  23. Rothe, S., Narayan, S., Severyn, A.: Leveraging pre-trained checkpoints for sequence generation tasks. Trans. Assoc. Comput. Linguist. 8, 264–280 (2020)

    Article  Google Scholar 

  24. Saha, T., Saha, S., Bhattacharyya, P.: Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning. PLOS ONE 15(7), e0235367 (2020-07-02). https://doi.org/10.1371/journal.pone.0235367, https://dx.plos.org/10.1371/journal.pone.0235367

  25. Salichs, M.A., et al.: Mini: A new social robot for the elderly. International J. Social Robot. 12(6), 1231–1249 (2020-12). https://doi.org/10.1007/s12369-020-00687-0, http://link.springer.com/10.1007/s12369-020-00687-0

  26. Takagi, K., Rzepka, R., Araki, K.: Just keep tweeting, dear: web-mining methods for helping a social robot understand user needs. In: 2011 AAAI Spring Symposium Series (2011)

    Google Scholar 

  27. Wahde, M.: A dialogue manager for task-oriented agents based on dialogue building-blocks and generic cognitive processing. In: 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–8. IEEE (2019-07). https://doi.org/10.1109/INISTA.2019.8778354, https://ieeexplore.ieee.org/document/8778354/

  28. Wessel, M., Acharya, G., Carpenter, J., Yin, M.: An ontology-based dialogue management system for virtual personal assistants | SRI international. In: International Workshop on Spoken Dialogue Systems Technology, p. 12 (2017), https://www.sri.com/work/publications/ontology-based-dialogue-management-system-virtual-personal-assistants

  29. Westlund, O.: Mobile news. Digital J. 1(1), 6–26 (2013). https://doi.org/10.1080/21670811.2012.740273, https://doi.org/10.1080/21670811.2012.740273

  30. Xu, H., Peng, H., Xie, H., Cambria, E., Zhou, L., Zheng, W.: End-to-end latent-variable task-oriented dialogue system with exact log-likelihood optimization. World Wide Web 23(3), 1989–2002 (2020-05). https://doi.org/10.1007/s11280-019-00688-8, http://link.springer.com/10.1007/s11280-019-00688-8

  31. Xu, L., Zhou, Q., Gong, K., Liang, X., Tang, J., Lin, L.: End-to-end knowledge-routed relational dialogue system for automatic diagnosis. Proceedings of the AAAI Conference on Artificial Intelligence 33, 7346–7353 (2019-07-17). https://doi.org/10.1609/aaai.v33i01.33017346, https://wvvw.aaai.org/ojs/index.php/AAAI/article/view/4722

  32. Zafarani, R., Abbasi, M.A., Liu, H.: Social media mining: an introduction. Cambridge University Press (2014)

    Google Scholar 

  33. Zeller, F., Smith, D.H., Au Duong, J., Mager, A.: Social media in human–robot interaction. Int. J. Social Robot.(2019-07-03). https://doi.org/10.1007/s12369-019-00573-4, http://link.springer.com/10.1007/s12369-019-00573-4

  34. Zhao, T.: Reinforest: Multi-domain dialogue management using hierarchical policies and knowledge ontology (2016)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M (“Fostering Young Doctors Research”, SMM4HRI-CM-UC3M), and in the context of the V PRICIT (Research and Technological Innovation Regional Programme). This work has been partially supported by the projects sense2MakeSense, funded by the Spanish State Agency of Research (PID2019-109388GB-I00), and IntCare-CM, funded by the regional government of the Community of Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Onorati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Onorati, T., Castro-González, Á., Díaz, P., Fernández-Rodicio, E. (2023). A Methodology for Personalized Dialogues Between Social Robots and Users Based on Social Media. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14051. Springer, Cham. https://doi.org/10.1007/978-3-031-35894-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35894-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35893-7

  • Online ISBN: 978-3-031-35894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy