Skip to main content

A WGAN-Based Generative Strategy in Evolutionary Multitasking for Multi-objective Optimization

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13968))

Included in the following conference series:

  • 640 Accesses

Abstract

Multitasking for multi-objective optimization (MTMO) is one of the most important issues in evolutionary computation. The information exchange mechanism among inter-tasks is the key factor in enhancing the algorithm. Evolutionary multitasking algorithm based on generative strategies (EMT-GS), the current mainstream algorithm, employs a generative adversarial network (GAN) to acquire, propagate and exploit knowledge among tasks, yet GAN suffers from a series of intractable drawbacks, such as training difficulties and mode collapse, etc. To address the issues listed above and achieve better performance, this paper proposes a new algorithm named MTMO-WGAN, which leverages Wasserstein GAN(WGAN) with weight clipping and gradient penalty as the generative strategies to deal with MTMO problems, respectively. Based on the MTMOO benchmark problems, MTMO-WGAN outperforms EMT-GS in the bulk of tasks and has great potential for advancement in the future, which unlocks possibilities for the application of deep generative models in the field of MTMO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Back, T., Hammel, U., Schwefel, H.-P.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1, 3–17 (1997)

    Article  Google Scholar 

  2. Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 24, 193–200 (2019)

    Article  Google Scholar 

  3. Gupta, A., Ong, Y.-S., Feng, L.: Multifactorial evolution: toward evolutionary multitasking. IEEE Trans. Evol. Comput. 20, 343–357 (2015)

    Article  Google Scholar 

  4. Gupta, A., Ong, Y.-S., Feng, L., Tan, K.C.: Multiobjective multifactorial optimization in evolutionary multitasking. IEEE Trans. Cybern. 47, 1652–1665 (2016)

    Article  Google Scholar 

  5. Wang X., Dong Z., Tang L., Zhang Q.: Multiobjective multitask optimization-neighborhood as a bridge for knowledge transfer. IEEE Trans. Evol. Comput. (2022)

    Google Scholar 

  6. Chen, Z., Zhou, Y., He, X., Zhang, J.: Learning task relationships in evolutionary multitasking for multiobjective continuous optimization. IEEE Trans. Cybern. 52(6), 5278–5289 (2020)

    Article  Google Scholar 

  7. Lin, J., Liu, H.-L., Xue, B., Zhang, M., Gu, F.: Multiobjective multitasking optimization based on incremental learning. IEEE Trans. Evol. Comput. 24, 824–838 (2019)

    Article  Google Scholar 

  8. Liang, Z., Zhang, J., Feng, L., Zhu, Z.: A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking. Expert Syst. Appl. 138, 112798 (2019)

    Article  Google Scholar 

  9. Liang, Z., Dong, H., Liu, C., Liang, W., Zhu, Z.: Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution. IEEE Trans. Cybern. 52(4), 2096–2109 (2020)

    Article  Google Scholar 

  10. Lin, J., Liu, H.-L., Tan, K.C., Gu, F.: An effective knowledge transfer approach for multiobjective multitasking optimization. IEEE Trans. Cybern. 51, 3238–3248 (2020)

    Article  Google Scholar 

  11. Liang, Z., Liang, W., Wang, Z., Ma, X., Liu, L., Zhu, Z.: Multiobjective evolutionary multitasking with two-stage adaptive knowledge transfer based on population distribution. IEEE Trans. Syst. Man Cybern. Syst. 52(7), 4457–4469 (2021)

    Article  Google Scholar 

  12. Bali, K.K., Gupta, A., Ong, Y.-S., Tan, P.S.: Cognizant multitasking in multiobjective multifactorial evolution: mo-mfea-Ii. IEEE Trans. Cybern. 51, 1784–1796 (2020)

    Article  Google Scholar 

  13. Yang, C., Ding, J., Tan, K.C., Jin, Y.: Two-stage assortative mating for multi-objective multifactorial evolutionary optimization. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 76–81. IEEE (2017)

    Google Scholar 

  14. Xu, Z., Liu, X., Zhang, K., He, J.: Cultural transmission based multi-objective evolution strategy for evolutionary multitasking. Inf. Sci. 582, 215–242 (2022)

    Article  MathSciNet  Google Scholar 

  15. Binh, H.T.T., Tuan, N.Q., Long, D.C.T.: A multi-objective multi-factorial evolutionary algorithm with reference-point-based approach. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2824–2831. IEEE (2019)

    Google Scholar 

  16. Yao, S., Dong, Z., Wang, X., Ren, L.: A multiobjective multifactorial optimization algorithm based on decomposition and dynamic resource allocation strategy. Inf. Sci. 511, 18–35 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hashimoto, R., Urita, T., Masuyama, N., Nojima, Y., Ishibuchi, H.: Effects of local mating in inter-task crossover on the performance of decomposition-based evolutionary multiobjective multitask optimization algorithms. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  18. Wei, T., Zhong, J.: Towards generalized resource allocation on evolutionary multitasking for multi-objective optimization. IEEE Comput. Intell. Mag. 16, 20–37 (2021)

    Article  Google Scholar 

  19. Chen, Y., Zhong, J., Tan, M.: A fast memetic multi-objective differential evolution for multi-tasking optimization. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

    Google Scholar 

  20. Zhou, L., et al.: Toward adaptive knowledge transfer in multifactorial evolutionary computation. IEEE Trans. Cybern. 51, 2563–2576 (2020)

    Article  Google Scholar 

  21. Liang, Z., Zhu, Y., Wang, X., Li, Z., Zhu, Z.: Evolutionary multitasking for multi-objective optimization based on generative strategies. IEEE Trans. Evol. Comput. 52(4), 2096–2109 (2022)

    Google Scholar 

  22. Feng, L., et al.: Evolutionary multitasking via explicit autoencoding. IEEE Trans. Cybern. 49, 3457–3470 (2018)

    Article  Google Scholar 

  23. Chen, H., Liu, H.-L., Gu, F., Tan, K.C.: A multi-objective multitask optimization algorithm using transfer rank. IEEE Trans. Evol. Comput. (2022)

    Google Scholar 

  24. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)

    Article  Google Scholar 

  25. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  26. Villani, C.: Optimal Transport: Old and New. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  27. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

  29. Yuan, Y., et al.: Evolutionary Multitasking for Multiobjective Continuous Optimization: Benchmark Problems, Performance Metrics and Baseline Results. arXiv preprint arXiv:1706.02766 (2017)

Download references

Acknowledgment

The study was supported in part by the Natural Science Foundation of China under Grant No. 62103286, No. 62001302, in part by Ministry of Education of the People’s Republic of China Humanities and Social Sciences Youth Foundation under Grant No. 21YJC630181, in part by Guangdong Basic and Applied Basic Research Foundation under Grant No. 2021A1515011348, in part by Natural Science Foundation of Shenzhen under Grant No. JCYJ20190808145011259, in part by Natural Science Foundation of Guangdong Province under Grant No. 2020A1515010752, No. 2020A1515110541, in part by Guangdong Province Innovation Team under Grant 2021WCXTD002, in part by Shenzhen Science and Technology Program under Grant RCBS20200714114920379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, T., Yao, X., Yue, G., Niu, B. (2023). A WGAN-Based Generative Strategy in Evolutionary Multitasking for Multi-objective Optimization. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13968. Springer, Cham. https://doi.org/10.1007/978-3-031-36622-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36622-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36621-5

  • Online ISBN: 978-3-031-36622-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy