Abstract
In Internet security protocols including TLS 1.3, KEMTLS, MLS and Noise, \(\textsf{HMAC}\) is being assumed to be a dual-PRF, meaning a PRF not only when keyed conventionally (through its first input), but also when “swapped” and keyed (unconventionally) through its second (message) input. We give the first in-depth analysis of the dual-PRF assumption on \(\textsf{HMAC}\). For the swap case, we note that security does not hold in general, but completely characterize when it does; we show that \(\textsf{HMAC}\) is swap-PRF secure if and only if keys are restricted to sets satisfying a condition called feasibility, that we give, and that holds in applications. The sufficiency is shown by proof and the necessity by attacks. For the conventional PRF case, we fill a gap in the literature by proving PRF security of \(\textsf{HMAC}\) for keys of arbitrary length. Our proofs are in the standard model, make assumptions only on the compression function underlying the hash function, and give good bounds in the multi-user setting. The positive results are strengthened through achieving a new notion of variable key-length PRF security that guarantees security even if different users use keys of different lengths, as happens in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Angel, Y., Dowling, B., Hülsing, A., Schwabe, P., Weber, F.: Post quantum noise. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 97–109. ACM Press (2022). https://doi.org/10.1145/3548606.3560577
Aviram, N., Dowling, B., Komargodski, I., Paterson, K.G., Ronen, E., Yogev, E.: Practical (post-quantum) key combiners from one-wayness and applications to TLS. Cryptology ePrint Archive, Report 2022/065 (2022). https://eprint.iacr.org/2022/065
Backendal, M., Bellare, M., Günther, F., Scarlata, M.: When messages are keys: Is HMAC a dual-PRF? (full version). Cryptology ePrint Archive, Paper 2023/861 (2023). https://eprint.iacr.org/2023/861
Barbosa, M., Farshim, P.: The related-key analysis of Feistel constructions. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 265–284. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_14
Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_36
Bellare, M.: New proofs for NMAC and HMAC: security without collision resistance. J. Cryptol. 28(4), 844–878 (2014). https://doi.org/10.1007/s00145-014-9185-x
Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_22
Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1
Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade construction and its concrete security. In: 37th FOCS, pp. 514–523. IEEE Computer Society Press (1996). https://doi.org/10.1109/SFCS.1996.548510
Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31
Bellare, M., Lysyanskaya, A.: Symmetric and dual PRFs from standard assumptions: A generic validation of an HMAC assumption. Cryptology ePrint Archive, Report 2015/1198 (2015). https://eprint.iacr.org/2015/1198
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25
Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_34
Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 21–33. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_2
Biham, E., Dunkelman, O., Keller, N.: A simple related-key attack on the full SHACAL-1. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 20–30. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_2
Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encapsulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_12
Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1
Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_14
Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)
Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user security, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_18
Brzuska, C., Cornelissen, E., Kohbrok, K.: Security analysis of the MLS key derivation. In: 2022 IEEE Symposium on Security and Privacy, pp. 2535–2553. IEEE Computer Society Press (2022). https://doi.org/10.1109/SP46214.2022.9833678
Brzuska, C., Delignat-Lavaud, A., Egger, C., Fournet, C., Kohbrok, K., Kohlweiss, M.: Key-schedule security for the TLS 1.3 standard. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part I. LNCS, vol. 13791, pp. 621–650. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22963-3_21
Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_39
Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again? (in)differentiability results for H2 and HMAC. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_21
Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol. J. Cryptol. 34(4), 1–69 (2021). https://doi.org/10.1007/s00145-021-09384-1
Dunkelman, O., Keller, N., Kim, J.: Related-key rectangle attack on the full SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 28–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7_3
Farrell, S.: [Cfrg] erratum for hmac what do we think... IRTF Crypto Forum Research Group mailing list. https://mailarchive.ietf.org/arch/msg/cfrg/hxj9UM2LdBy2eipAJX2idjQuxhk/ (2017)
Gaži, P., Pietrzak, K., Rybár, M.: The exact PRF-security of NMAC and HMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 113–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_7
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM, revisited: tight bounds for nonce randomization. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1429–1440. ACM Press (2018). https://doi.org/10.1145/3243734.3243816
Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_25
Hülsing, A., Ning, K.C., Schwabe, P., Weber, F., Zimmermann, P.R.: Post-quantum WireGuard. In: 2021 IEEE Symposium on Security and Privacy, pp. 304–321. IEEE Computer Society Press (2021). https://doi.org/10.1109/SP40001.2021.00030
Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 97. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (Nov (1997)
Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74619-5_15
Knudsen, L.R.: Cryptanalysis of LOKI 91. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1_62
Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Authentication. RFC 2104 (Informational) (1997). https://doi.org/10.17487/RFC2104. https://www.rfc-editor.org/rfc/rfc2104.txt, updated by RFC 6151
Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_34
Luykx, A., Mennink, B., Paterson, K.G.: Analyzing multi-key security degradation. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 575–605. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_20
Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_8
Memisyazici, E.: RFC Erratum on RFC 2104, “HMAC: Keyed-Hashing for Message Authentication”. RFC Errata, Errata ID: 4809. https://www.rfc-editor.org/errata_search.php?rfc=2104&eid=4809 (2016)
Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21
Phan, R.C.-W.: Related-key attacks on triple-DES and DESX variants. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 15–24. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2_2
Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed Standard) (2018). https://doi.org/10.17487/RFC8446. https://www.rfc-editor.org/rfc/rfc8446.txt
Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239_14
Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1461–1480. ACM Press (2020). https://doi.org/10.1145/3372297.3423350
of Standards, N.I., Technology: The keyed-hash message authentication code (HMAC). Tech. Rep. Federal Information Processing Standards Publications (FIPS PUBS) 198–1, U.S. Department of Commerce, Washington, D.C. (2008). https://doi.org/10.6028/NIST.FIPS.198-1
of Standards, N.I., Technology: Secure hash standard (SHS). Tech. Rep. Federal Information Processing Standards Publications (FIPS PUBS) 180–4, U.S. Department of Commerce, Washington, D.C. (2015). https://doi.org/10.6028/NIST.FIPS.180-4
Stebila, D., Fluhrer, S., Gueron, S.: Hybrid key exchange in TLS 1.3 - draft-ietf-tls-hybrid-design-05. https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-05 (2022)
Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press (1982). https://doi.org/10.1109/SFCS.1982.45
Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved related-key impossible differential attacks on reduced-round AES-192. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 15–27. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7_2
Acknowledgments
Bellare was supported in part by NSF grant CNS-2154272 and KACST.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Backendal, M., Bellare, M., Günther, F., Scarlata, M. (2023). When Messages Are Keys: Is HMAC a Dual-PRF?. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14083. Springer, Cham. https://doi.org/10.1007/978-3-031-38548-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-38548-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38547-6
Online ISBN: 978-3-031-38548-3
eBook Packages: Computer ScienceComputer Science (R0)