Skip to main content

Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14085))

Included in the following conference series:

Abstract

We present a new method for transforming zero-knowledge protocols in the designated verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable. Our transformation applies to a large class of ZK protocols based on oblivious transfer. In particular, we show that it can be applied to recent, fast protocols based on vector oblivious linear evaluation (VOLE), with a technique we call VOLE-in-the-head, upgrading these protocols to support public verifiability. Our resulting ZK protocols have linear proof size, and are simpler, smaller and faster than related approaches based on MPC-in-the-head.

To build VOLE-in-the-head while supporting both binary circuits and large finite fields, we develop several new technical tools. One of these is a new proof of security for the SoftSpokenOT protocol (Crypto 2022), which generalizes it to produce certain types of VOLE correlations over large fields. Secondly, we present a new ZK protocol that is tailored to take advantage of this form of VOLE, which leads to a publicly verifiable VOLE-in-the-head protocol with only 2x more communication than the best, designated-verifier VOLE-based protocols.

We analyze the soundness of our approach when made non-interactive using the Fiat-Shamir transform, using round-by-round soundness. As an application of the resulting NIZK, we present \(\textsf{FAEST}\), a post-quantum signature scheme based on AES. FAEST is the first AES-based signature scheme to be smaller than SPHINCS+, with signature sizes between 5.6 and 6.6kB at the 128-bit security level. Compared with the smallest version of SPHINCS+ (7.9kB), FAEST verification is slower, but the signing times are between 8x and 40x faster.

Michael Klooß: Research was conducted at Karlsruhe Institute of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Meaning that the verifier’s messages are always sampled uniformly at random.

  2. 2.

    We use standard notions of hybrid models, see for example [38]. That is, we consider access to an (unbounded) number of instances (or sessions), distinguished of the hybrid functionality, which are distinguished by an identifier \( sid \). Both CRS and RO model can be viewed as hybrid models as well, although we do not do this (and limit the CRS and RO to a single one in our protocols).

  3. 3.

    As an example, MPC-in-the-head approaches [34, 35] leaking their watch-lists during execution allow a cheating prover to specifically maul unopened parties.

  4. 4.

    We note that a modification of the compiler, which additionally forces the verifier to commit to its OT choices (with an extractable-binding commitment scheme), yields full zero-knowledge. However, this modification does not preserve public-coin.

  5. 5.

    Note that setting \(\mathcal {L}= \{2^{S_{\varDelta }}\}\) is equivalent to no leakage, i.e., not allowing a corrupt \(\mathcal {P}\) to perform a selective failure attack.

  6. 6.

    In this case, the “subspace” is just the whole vector space \(\mathbb {F}_p^n\).

  7. 7.

    The challenge \(\boldsymbol{\eta }\) is only used to save communication. \(\mathcal {P} \) could instead directly send \(\textbf{V}_2 + \textbf{V}_1 \cdot \varDelta \) for \(\mathcal {V} \) to check.

References

  1. Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The return of the sdith. Cryptology ePrint Archive, Paper 2022/1645 (2022). https://eprint.iacr.org/2022/1645

  2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3134104

  4. Attema, T., Fehr, S., Klooß, M.: Fiat-shamir transformation of multi-round interactive proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp. 113–142. Springer, Heidelberg (Nov 2022). https://doi.org/10.1007/978-3-031-22318-1_5

  5. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: Moz\(\mathbb{Z} _{2^k}\)arella: Efficient vector-OLE and zero-knowledge proofs over \(\mathbb{Z} _{2^k}\). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 329–358. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15985-5_12

  6. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_11

    Chapter  Google Scholar 

  7. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: \(\sf Mac^{\prime }n^{\prime }Cheese\): zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 92–122. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_4

    Chapter  Google Scholar 

  8. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_17

    Chapter  Google Scholar 

  9. Ben-Sasson, E., et al.: Computational integrity with a public random string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 551–579. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_19

    Chapter  Google Scholar 

  10. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

    Chapter  Google Scholar 

  11. Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their Applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15

    Chapter  Google Scholar 

  12. Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_2

    Chapter  Google Scholar 

  13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM Press (Oct 2018). https://doi.org/10.1145/3243734.3243868

  14. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 291–308. ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3354255

  15. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press (Jun 2019). https://doi.org/10.1145/3313276.3316380

  16. Cascudo, I., Damgård, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I.: Efficient UC commitment extension with homomorphism for free (and applications). In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 606–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_22

    Chapter  Google Scholar 

  17. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3133997

  18. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1

    Chapter  Google Scholar 

  19. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  20. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: using AES in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 669–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_27

    Chapter  Google Scholar 

  21. de Saint Guilhem, C., Orsini, E., Tanguy, T.: Limbo: Efficient zero-knowledge MPCitH-based arguments. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 3022–3036. ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484595

  22. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applications. In: 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  23. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter signatures based on tailor-made minimalist symmetric-key crypto. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 843–857. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3559353

  24. Dósa, G., Szalkai, I., Laflamme, C.: The maximum and minimum number of circuits and bases of matroids. Pure Math. Appl. 15(4), 383–392 (2004), https://math.uni-pannon.hu/~szalkai/Szalkai-2006-DosaGy-PUMA.pdf

  25. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_21

    Chapter  Google Scholar 

  26. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs. Cryptology ePrint Archive, Report 2022/188 (2022). https://eprint.iacr.org/2022/188

  27. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 541–572. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_19

  28. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  29. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083. USENIX Association (Aug 2016)

    Google Scholar 

  30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press (May 1985). https://doi.org/10.1145/22145.22178

  31. Gvili, Y., Ha, J., Scheffler, S., Varia, M., Yang, Z., Zhang, X.: TurboIKOS: improved non-interactive zero knowledge and post-quantum signatures. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727, pp. 365–395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78375-4_15

    Chapter  Google Scholar 

  32. Hulsing, A., et al.: SPHINCS+. Tech. rep., National Institute of Standards and Technology (2022), available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  33. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press (Jun 2007). https://doi.org/10.1145/1250790.1250794

  34. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 433–442. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374438

  35. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  36. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and post-quantum signatures. Cryptology ePrint Archive, Report 2022/588 (2022). https://eprint.iacr.org/2022/588

  37. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (Oct 2018). https://doi.org/10.1145/3243734.3243805

  38. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In: Tutorials on the Foundations of Cryptography. ISC, pp. 277–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_6

    Chapter  Google Scholar 

  39. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Standards and Technology (2022), available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  40. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_22

    Chapter  Google Scholar 

  41. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

    Chapter  Google Scholar 

  42. Prest, T., et al.: FALCON. Tech. rep., National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  43. Roy, L.: SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 657–687. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15802-5_23

  44. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In: 2021 IEEE Symposium on Security and Privacy, pp. 1074–1091. IEEE Computer Society Press (May 2021). https://doi.org/10.1109/SP40001.2021.00056

  45. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: Interactive zero-knowledge proofs with sublinear communication. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 2901–2914. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560667

  46. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover time. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 299–328. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15985-5_11

  47. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 2986–3001. ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484556

Download references

Acknowledgments

The work of Michael Klooß was supported by KASTEL Security Research Labs and by Helsinki Institute for Information Technology HIIT. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Emmmanuela Orsini, Lawrence Roy and Peter Scholl have been supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0085. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of any of the funders. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. Lennart Braun has been further supported by the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC). Cyprien Delpech de Saint Guilhem is a Junior FWO Postdoctoral Fellow under project 1266123N and was also supported by CyberSecurity Research Flanders with reference number VR20192203 Peter Scholl was also supported by the Aarhus University Research Foundation, and the Independent Research Fund Denmark under project number 0165-00107B (C3PO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Baum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baum, C. et al. (2023). Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-3-031-38554-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38554-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38553-7

  • Online ISBN: 978-3-031-38554-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy