Skip to main content

Triangle Solitaire

  • Conference paper
  • First Online:
Cellular Automata and Discrete Complex Systems (AUTOMATA 2023)

Abstract

The solitaire of independence is a reversible process (more precisely, a groupoid/group action) resembling the classical 15-puzzle, which gives information about independent sets of coordinates in a totally extremally permutive subshift. We study the solitaire with the triangle shape, which corresponds to the spacetime diagrams of bipermutive cellular automata with radius 1/2. We give a polynomial time algorithm that puts any finite subset of the plane in normal form using solitaire moves, and show that the solitaire orbit of a line of consecutive ones – the line orbit – is completely characterised by the notion of a fill matrix. We show that the diameter of the line orbit under solitaire moves is cubic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger, R.: The undecidability of the domino problem. Mem. Amer. Math. Soc. 66, 72 (1966)

    MathSciNet  MATH  Google Scholar 

  2. Hanna, P.D.: The On-Line Encyclopedia of Integer Sequences (2022). Sequence A101481. https://oeis.org/A101481

  3. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. (2) 171(3), 2011–2038 (2010). https://doi.org/10.4007/annals.2010.171.2011

  4. Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergodic Theory Dynam. Syst. 35(2), 431–460 (2015)

    Google Scholar 

  5. Jeandel, E., Vanier, P.: Hardness of conjugacy, embedding and factorization of multidimensional subshifts. J. Comput. Syst. Sci. 81(8), 1648–1664 (2015)

    Google Scholar 

  6. Kirchner, G.: The On-Line Encyclopedia of Integer Sequences. Sequence A295928 (2022). https://oeis.org/A295928

  7. Ledrappier, F.: Un champ markovien peut être d’entropie nulle et mélangeant. C. R. Acad. Sci. Paris Sér. A-B 287(7), A561–A563 (1978)

    Google Scholar 

  8. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511626302

  9. Moore, C., Boykett, T.: Commuting cellular automata. Complex Syst. 11(1), 55–64 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Pivato, M.: Invariant measures for bipermutative cellular automata. Discrete Contin. Dyn. Syst. 12(4), 723–736 (2005). https://doi.org/10.3934/dcds.2005.12.723

    Article  MathSciNet  MATH  Google Scholar 

  11. Sablik, M.: Measure rigidity for algebraic bipermutative cellular automata. Ergodic Theory Dynam. Syst. 27(6), 1965–1990 (2007). https://doi.org/10.1017/S0143385707000247

    Article  MathSciNet  MATH  Google Scholar 

  12. Salo, V.: Cutting corners. J. Comput. Syst. Sci. 128, 35–70 (2022). https://doi.org/10.1016/j.jcss.2022.03.001

    Article  MathSciNet  MATH  Google Scholar 

  13. Salo, V., Törmä, I.: Commutators of bipermutive and affine cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 155–170. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40867-0_11

    Chapter  MATH  Google Scholar 

  14. Wang, H.: Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1–42 (1961)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ville Salo or Juliette Schabanel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salo, V., Schabanel, J. (2023). Triangle Solitaire. In: Manzoni, L., Mariot, L., Roy Chowdhury, D. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2023. Lecture Notes in Computer Science, vol 14152. Springer, Cham. https://doi.org/10.1007/978-3-031-42250-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42250-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42249-2

  • Online ISBN: 978-3-031-42250-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy