Abstract
The solitaire of independence is a reversible process (more precisely, a groupoid/group action) resembling the classical 15-puzzle, which gives information about independent sets of coordinates in a totally extremally permutive subshift. We study the solitaire with the triangle shape, which corresponds to the spacetime diagrams of bipermutive cellular automata with radius 1/2. We give a polynomial time algorithm that puts any finite subset of the plane in normal form using solitaire moves, and show that the solitaire orbit of a line of consecutive ones – the line orbit – is completely characterised by the notion of a fill matrix. We show that the diameter of the line orbit under solitaire moves is cubic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berger, R.: The undecidability of the domino problem. Mem. Amer. Math. Soc. 66, 72 (1966)
Hanna, P.D.: The On-Line Encyclopedia of Integer Sequences (2022). Sequence A101481. https://oeis.org/A101481
Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. (2) 171(3), 2011–2038 (2010). https://doi.org/10.4007/annals.2010.171.2011
Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergodic Theory Dynam. Syst. 35(2), 431–460 (2015)
Jeandel, E., Vanier, P.: Hardness of conjugacy, embedding and factorization of multidimensional subshifts. J. Comput. Syst. Sci. 81(8), 1648–1664 (2015)
Kirchner, G.: The On-Line Encyclopedia of Integer Sequences. Sequence A295928 (2022). https://oeis.org/A295928
Ledrappier, F.: Un champ markovien peut être d’entropie nulle et mélangeant. C. R. Acad. Sci. Paris Sér. A-B 287(7), A561–A563 (1978)
Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511626302
Moore, C., Boykett, T.: Commuting cellular automata. Complex Syst. 11(1), 55–64 (1997)
Pivato, M.: Invariant measures for bipermutative cellular automata. Discrete Contin. Dyn. Syst. 12(4), 723–736 (2005). https://doi.org/10.3934/dcds.2005.12.723
Sablik, M.: Measure rigidity for algebraic bipermutative cellular automata. Ergodic Theory Dynam. Syst. 27(6), 1965–1990 (2007). https://doi.org/10.1017/S0143385707000247
Salo, V.: Cutting corners. J. Comput. Syst. Sci. 128, 35–70 (2022). https://doi.org/10.1016/j.jcss.2022.03.001
Salo, V., Törmä, I.: Commutators of bipermutive and affine cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 155–170. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40867-0_11
Wang, H.: Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1–42 (1961)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Salo, V., Schabanel, J. (2023). Triangle Solitaire. In: Manzoni, L., Mariot, L., Roy Chowdhury, D. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2023. Lecture Notes in Computer Science, vol 14152. Springer, Cham. https://doi.org/10.1007/978-3-031-42250-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-42250-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42249-2
Online ISBN: 978-3-031-42250-8
eBook Packages: Computer ScienceComputer Science (R0)