Abstract
We model transportation networks as dynamic graphs and introduce the ability for agents to use Backward Time-Travel (BTT) devices at any node to travel back in time, subject to certain constraints and fees, before resuming their journey.
We propose exact algorithms to compute travel plans with constraints on BTT cost or the maximum time that can be traveled back while minimizing travel delay (the difference between arrival and starting times). These algorithms run in polynomial time. We also study the impact of BTT device pricing policies on the computation of travel plans with respect to delay and cost and identify necessary properties for pricing policies to enable such computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
sub-additive means that for all \(a,b\in \mathbb {N}\), \(\mathfrak {f}(a+b) \le \mathfrak {f}(a) + \mathfrak {f}(b)\).
- 2.
An evolving graph with an infinite number of edges can exist in practice even with bounded memory, e.g., when the graph is periodic.
References
Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost broadcast in dynamic networks. Int. J. Found. Comput. Sci. 26(4), 499–522 (2015). https://doi.org/10.1142/S0129054115500288
Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012). https://doi.org/10.1080/17445760.2012.668546
Casteigts, A., Himmel, A., Molter, H., Zschoche, P.: Finding temporal paths under waiting time constraints. Algorithmica 83(9), 2754–2802 (2021). https://doi.org/10.1007/s00453-021-00831-w
Casteigts, A., Peters, J.G., Schoeters, J.: Temporal cliques admit sparse spanners. J. Comput. Syst. Sci. 121, 1–17 (2021). https://doi.org/10.1016/j.jcss.2021.04.004
Chen, S., Nahrstedt, K.: An overview of QoS routing for the next generation high-speed networks: problems and solutions. IEEE Netw. 12, 64–79 (1998). https://doi.org/10.1109/65.752646
Ferreira, A.: On models and algorithms for dynamic communication networks: the case for evolving graphs. In: Quatrièmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications (ALGOTEL 2002), Mèze, France, pp. 155–161. INRIA Press (2002)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., San Francisco (1990)
Garroppo, R.G., Giordano, S., Tavanti, L.: A survey on multi-constrained optimal path computation: exact and approximate algorithms. Comput. Netw. 54(17), 3081–3107 (2010). https://doi.org/10.1016/j.comnet.2010.05.017
Guck, J.W., Van Bemten, A., Reisslein, M., Kellerer, W.: Unicast QoS routing algorithms for SDN: a comprehensive survey and performance evaluation. IEEE Commun. Surv. Tutor. 20(1), 388–415 (2018). https://doi.org/10.1109/COMST.2017.2749760
Luna, G.A.D., Flocchini, P., Prencipe, G., Santoro, N.: Black hole search in dynamic rings. In: 41st IEEE International Conference on Distributed Computing Systems, ICDCS 2021, Washington DC, USA, 7–10 July 2021, pp. 987–997. IEEE (2021). https://doi.org/10.1109/ICDCS51616.2021.00098
Pal, G.: The time machine (1960)
Russo, A., Russo, J.: Avengers: Endgame (2019)
Thulasiraman, K., Arumugam, S., Brandstädt, A., Nishizeki, T.: Handbook of Graph Theory, Combinatorial Optimization, and Algorithms (2016)
Villacis-Llobet, J., Bui-Xuan, B.M., Potop-Butucaru, M.: Foremost non-stop journey arrival in linear time. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol. 13298, pp. 283–301. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09993-9_16
Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. 14(7), 1228–1234 (1996). https://doi.org/10.1109/49.536364
Zemeckis, R.: Back to the future (1985)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bramas, Q., Luttringer, JR., Tixeuil, S. (2023). Offline Constrained Backward Time Travel Planning. In: Dolev, S., Schieber, B. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2023. Lecture Notes in Computer Science, vol 14310. Springer, Cham. https://doi.org/10.1007/978-3-031-44274-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-44274-2_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44273-5
Online ISBN: 978-3-031-44274-2
eBook Packages: Computer ScienceComputer Science (R0)