Skip to main content

Offline Constrained Backward Time Travel Planning

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2023)

Abstract

We model transportation networks as dynamic graphs and introduce the ability for agents to use Backward Time-Travel (BTT) devices at any node to travel back in time, subject to certain constraints and fees, before resuming their journey.

We propose exact algorithms to compute travel plans with constraints on BTT cost or the maximum time that can be traveled back while minimizing travel delay (the difference between arrival and starting times). These algorithms run in polynomial time. We also study the impact of BTT device pricing policies on the computation of travel plans with respect to delay and cost and identify necessary properties for pricing policies to enable such computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    sub-additive means that for all \(a,b\in \mathbb {N}\), \(\mathfrak {f}(a+b) \le \mathfrak {f}(a) + \mathfrak {f}(b)\).

  2. 2.

    An evolving graph with an infinite number of edges can exist in practice even with bounded memory, e.g., when the graph is periodic.

References

  1. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost broadcast in dynamic networks. Int. J. Found. Comput. Sci. 26(4), 499–522 (2015). https://doi.org/10.1142/S0129054115500288

    Article  MathSciNet  MATH  Google Scholar 

  2. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012). https://doi.org/10.1080/17445760.2012.668546

    Article  Google Scholar 

  3. Casteigts, A., Himmel, A., Molter, H., Zschoche, P.: Finding temporal paths under waiting time constraints. Algorithmica 83(9), 2754–2802 (2021). https://doi.org/10.1007/s00453-021-00831-w

    Article  MathSciNet  MATH  Google Scholar 

  4. Casteigts, A., Peters, J.G., Schoeters, J.: Temporal cliques admit sparse spanners. J. Comput. Syst. Sci. 121, 1–17 (2021). https://doi.org/10.1016/j.jcss.2021.04.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Nahrstedt, K.: An overview of QoS routing for the next generation high-speed networks: problems and solutions. IEEE Netw. 12, 64–79 (1998). https://doi.org/10.1109/65.752646

    Article  Google Scholar 

  6. Ferreira, A.: On models and algorithms for dynamic communication networks: the case for evolving graphs. In: Quatrièmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications (ALGOTEL 2002), Mèze, France, pp. 155–161. INRIA Press (2002)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., San Francisco (1990)

    Google Scholar 

  8. Garroppo, R.G., Giordano, S., Tavanti, L.: A survey on multi-constrained optimal path computation: exact and approximate algorithms. Comput. Netw. 54(17), 3081–3107 (2010). https://doi.org/10.1016/j.comnet.2010.05.017

    Article  MATH  Google Scholar 

  9. Guck, J.W., Van Bemten, A., Reisslein, M., Kellerer, W.: Unicast QoS routing algorithms for SDN: a comprehensive survey and performance evaluation. IEEE Commun. Surv. Tutor. 20(1), 388–415 (2018). https://doi.org/10.1109/COMST.2017.2749760

    Article  Google Scholar 

  10. Luna, G.A.D., Flocchini, P., Prencipe, G., Santoro, N.: Black hole search in dynamic rings. In: 41st IEEE International Conference on Distributed Computing Systems, ICDCS 2021, Washington DC, USA, 7–10 July 2021, pp. 987–997. IEEE (2021). https://doi.org/10.1109/ICDCS51616.2021.00098

  11. Pal, G.: The time machine (1960)

    Google Scholar 

  12. Russo, A., Russo, J.: Avengers: Endgame (2019)

    Google Scholar 

  13. Thulasiraman, K., Arumugam, S., Brandstädt, A., Nishizeki, T.: Handbook of Graph Theory, Combinatorial Optimization, and Algorithms (2016)

    Google Scholar 

  14. Villacis-Llobet, J., Bui-Xuan, B.M., Potop-Butucaru, M.: Foremost non-stop journey arrival in linear time. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol. 13298, pp. 283–301. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09993-9_16

    Chapter  Google Scholar 

  15. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. 14(7), 1228–1234 (1996). https://doi.org/10.1109/49.536364

    Article  Google Scholar 

  16. Zemeckis, R.: Back to the future (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Bramas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bramas, Q., Luttringer, JR., Tixeuil, S. (2023). Offline Constrained Backward Time Travel Planning. In: Dolev, S., Schieber, B. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2023. Lecture Notes in Computer Science, vol 14310. Springer, Cham. https://doi.org/10.1007/978-3-031-44274-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44274-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44273-5

  • Online ISBN: 978-3-031-44274-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy