Skip to main content

Morphological Versus Functional Network Organization: A Comparison Between Structural Covariance Networks and Probabilistic Functional Modes

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14312))

Included in the following conference series:

Abstract

The degree to which gray matter morphology constrains brain function remains an elusive target of investigation due to the lack of a gold-standard against which to argue for a better or worse metric of neurobiological significance. Therefore, we sought to compare the output of state-of-the-art morphological and functional covariance decomposition methods directly to one another. Specifically, we compared the spatial network organization produced by non-negative matrix factorization of T1-weighted images and probabilistic functional modes of resting state functional MRI scans from 1297 UK Biobank subjects. We measured the cosine similarity of matched networks across 2 to 140 rank decompositions. Our findings revealed strong commonality between morphological and functional networks at the lowest rank (2). Morphology-function network commonality was retained across all ranks in the visual cortex, but broader network organization diverged between morphology and function at higher ranks.

A. Sotiras and J. Bijsterbosch—Shared senior author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B Biol. Sci. 360, 1001–1013 (2005). https://doi.org/10.1098/rstb.2005.1634

  2. Bielczyk, N.Z., et al.: Thresholding functional connectomes by means of mixture modeling. Neuroimage 171, 402–414 (2018). https://doi.org/10.1016/j.neuroimage.2018.01.003

    Article  Google Scholar 

  3. Farahibozorg, S.-R., et al.: Hierarchical modelling of functional brain networks in population and individuals from big fMRI data (2021). https://doi.org/10.1101/2021.02.01.428496

  4. Power, J.D., et al.: Functional network organization of the human brain. Neuron 72, 665–678 (2011). https://doi.org/10.1016/j.neuron.2011.09.006

    Article  Google Scholar 

  5. Yeo, B.T.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011). https://doi.org/10.1152/jn.00338.2011

    Article  Google Scholar 

  6. Alexander-Bloch, A., Raznahan, A., Bullmore, E., Giedd, J.: The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci. 33, 2889–2899 (2013). https://doi.org/10.1523/JNEUROSCI.3554-12.2013

    Article  Google Scholar 

  7. Carmon, J., et al.: Reliability and comparability of human brain structural covariance networks. Neuroimage 220, 117104 (2020). https://doi.org/10.1016/j.neuroimage.2020.117104

    Article  Google Scholar 

  8. Sotiras, A., Resnick, S.M., Davatzikos, C.: Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization. Neuroimage 108, 1–16 (2015). https://doi.org/10.1016/j.neuroimage.2014.11.045

    Article  Google Scholar 

  9. Suárez, L.E., Markello, R.D., Betzel, R.F., Misic, B.: Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020). https://doi.org/10.1016/j.tics.2020.01.008

    Article  Google Scholar 

  10. Llera, A., Wolfers, T., Mulders, P., Beckmann, C.F.: Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior. eLife 8, e44443 (2019). https://doi.org/10.7554/eLife.44443

  11. Huntenburg, J.M., Bazin, P.-L., Margulies, D.S.: Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018). https://doi.org/10.1016/j.tics.2017.11.002

    Article  Google Scholar 

  12. Kelly, C., et al.: A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage 61, 1129–1142 (2012). https://doi.org/10.1016/j.neuroimage.2012.03.021

    Article  Google Scholar 

  13. Zhang, Z., et al.: Resting-state brain organization revealed by functional covariance networks. PLoS ONE 6, e28817 (2011). https://doi.org/10.1371/journal.pone.0028817

    Article  Google Scholar 

  14. Segall, J.M., et al.: Correspondence between structure and function in the human brain at rest. Front. Neuroinform. 6, 10 (2012). https://doi.org/10.3389/fninf.2012.00010

    Article  Google Scholar 

  15. Sotiras, A., Toledo, J.B., Gur, R.E., Gur, R.C., Satterthwaite, T.D., Davatzikos, C.: Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proc. Natl. Acad. Sci. 114, 3527–3532 (2017). https://doi.org/10.1073/pnas.1620928114

    Article  Google Scholar 

  16. Yang, Z., Oja, E.: Linear and nonlinear projective nonnegative matrix factorization. IEEE Trans. Neural Netw. 21, 734–749 (2010). https://doi.org/10.1109/TNN.2010.2041361

    Article  Google Scholar 

  17. Kaczkurkin, A.N., et al.: Evidence for dissociable linkage of dimensions of psychopathology to brain structure in youths. Am. J. Psychiatry 176, 1000–1009 (2019). https://doi.org/10.1176/appi.ajp.2019.18070835

    Article  Google Scholar 

  18. Harrison, S.J., et al.: Large-scale Probabilistic Functional Modes from resting state fMRI. Neuroimage 109, 217–231 (2015). https://doi.org/10.1016/j.neuroimage.2015.01.013

    Article  Google Scholar 

  19. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001). https://doi.org/10.1109/42.906424

    Article  Google Scholar 

  20. Alfaro-Almagro, F., et al.: Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424 (2018). https://doi.org/10.1016/j.neuroimage.2017.10.034

    Article  Google Scholar 

  21. Boutsidis, C., Gallopoulos, E.: SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recognit. 41, 1350–1362 (2008). https://doi.org/10.1016/j.patcog.2007.09.010

    Article  MATH  Google Scholar 

  22. Ha, S.M., Bani, A., Sotiras, A.: Scalable NMF via linearly optimized data compression. In: Medical Imaging 2023: Image Processing, pp. 170–176. SPIE (2023). https://doi.org/10.1117/12.2654282

  23. Papenberg, M., Klau, G.W.: Using anticlustering to partition data sets into equivalent parts. Psychol. Methods 26, 161–174 (2021). https://doi.org/10.1037/met0000301

    Article  Google Scholar 

  24. Crouse, D.F.: On implementing 2D rectangular assignment algorithms. IEEE Trans. Aerosp. Electron. Syst. 52, 1679–1696 (2016). https://doi.org/10.1109/TAES.2016.140952

    Article  Google Scholar 

  25. Alexander-Bloch, A., Giedd, J.N., Bullmore, E.: Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013). https://doi.org/10.1038/nrn3465

    Article  Google Scholar 

  26. Pang, J.C., et al.: Geometric constraints on human brain function. Nature 618, 566–574 (2023). https://doi.org/10.1038/s41586-023-06098-1

    Article  Google Scholar 

  27. Bijsterbosch, J.D., et al.: The relationship between spatial configuration and functional connectivity of brain regions. eLife 7, e32992 (2018). https://doi.org/10.7554/eLife.32992

  28. Harrison, S.J., et al.: Modelling subject variability in the spatial and temporal characteristics of functional modes. Neuroimage 222, 117226 (2020). https://doi.org/10.1016/j.neuroimage.2020.117226

    Article  Google Scholar 

  29. Sydnor, V.J., et al.: Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021). https://doi.org/10.1016/j.neuron.2021.06.016

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Lenzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lenzini, P., Earnest, T., Ha, S.M., Bani, A., Sotiras, A., Bijsterbosch, J. (2023). Morphological Versus Functional Network Organization: A Comparison Between Structural Covariance Networks and Probabilistic Functional Modes. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2023. Lecture Notes in Computer Science, vol 14312. Springer, Cham. https://doi.org/10.1007/978-3-031-44858-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44858-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44857-7

  • Online ISBN: 978-3-031-44858-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy