Skip to main content

Learning Sequential Information in Task-Based fMRI for Synthetic Data Augmentation

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14312))

Included in the following conference series:

Abstract

Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the \(\alpha \)-GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi-Sureshjani, S., Amirrajab, S., Lorenz, C., Weese, J., Pluim, J., Breeuwer, M.: 4D semantic cardiac magnetic resonance image synthesis on XCAT anatomical model. In: Arbel, T., Ben Ayed, I., de Bruijne, M., Descoteaux, M., Lombaert, H., Pal, C. (eds.) Proceedings of the Third Conference on Medical Imaging with Deep Learning, 06–08 Jul 2020, vol. 121, pp. 6–18. PMLR. Proceedings of Machine Learning Research (2020). http://proceedings.mlr.press/v121/abbasi-sureshjani20a.html

  2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). arXiv arxiv.org/abs/1810.04805

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs/2010.11929 (2020). arXiv arxiv.org/abs/2010.11929

  4. Dvornek, N., Ventola, P., Pelphrey, K., Duncan, J.: Identifying autism from resting-state fMRI using long short-term memory networks. In: Machine Learning in Medical Imaging, MLMI (Workshop), vol. 10541, pp. 362–370, September 2017. https://doi.org/10.1007/978-3-319-67389-9_42

  5. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, pp. 289–293 (2018). https://doi.org/10.1109/ISBI.2018.8363576

  6. Goodfellow, I.J., et al.: Generative adversarial networks (2014). arXiv arxiv.org/abs/1406.2661

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  8. Kaiser, M.D., et al.: Neural signatures of autism. Proc. Natl. Acad. Sci. 107(49), 21223–21228 (2010)

    Article  Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013). arXiv arxiv.org/abs/1312.6114

  10. Kwon, G., Han, C., Kim, D.: Generation of 3D brain MRI using auto-encoding generative adversarial networks. In: Dinggang, S., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 118–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_14

    Chapter  Google Scholar 

  11. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  12. Liu, Z., et al.: Video Swin transformer. arXiv arxiv.org/abs/2106.13230 (2021)

  13. van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  14. Madan, Y., Veetil, I.K., Sowmya, V., Gopalakrishnan E.A., Soman, K.P.: Synthetic data augmentation of MRI using generative variational autoencoder for Parkinson’s disease detection. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds.) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol. 267. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6616-2_16

  15. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014). arXiv arxiv.org/abs/1411.1784

  16. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  17. Qureshi, M.N.I., Oh, J., Lee, B.: 3D-CNN based discrimination of schizophrenia using resting-state fMRI. Artif. Intell. Med. 98, 10–17 (2019)

    Article  Google Scholar 

  18. Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M.: Automated anatomical labelling atlas 3. Neuroimage 206, 116189 (2020)

    Article  Google Scholar 

  19. Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational approaches for auto-encoding generative adversarial networks (2017). arXiv arxiv.org/abs/1706.04987

  20. Tay, Y., Dehghani, M., Gupta, J.P., Bahri, D., Aribandi, V., Qin, Z., Metzler, D.: Are pre-trained convolutions better than pre-trained transformers? CoRR abs/2105.03322 (2021). arXiv arxiv.org/abs/2105.03322

  21. Vaswani, A., et al.: Attention is all you need. arXiv arxiv.org/abs/1706.03762 (2017)

  22. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.: CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access 8, 91916–91923 (2020). https://doi.org/10.1109/ACCESS.2020.2994762

    Article  Google Scholar 

  23. Yang, D., et al.: Brain responses to biological motion predict treatment outcome in young children with autism. Transl. Psychiatry 6(11), e948 (2016). https://doi.org/10.1038/tp.2016.213

    Article  Google Scholar 

  24. Zhuang, P., Schwing, A.G., Koyejo, O.: fMRI data augmentation via synthesis. In: 2019 IEEE 16th International Symposium on Biomedical Imaging, ISBI 2019, pp. 1783–1787 (2019). https://doi.org/10.1109/ISBI.2019.8759585

Download references

Acknowledgement

The data collection and study included in this paper are supported under NIH grant R01NS035193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Dvornek, N.C., Staib, L.H., Duncan, J.S. (2023). Learning Sequential Information in Task-Based fMRI for Synthetic Data Augmentation. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2023. Lecture Notes in Computer Science, vol 14312. Springer, Cham. https://doi.org/10.1007/978-3-031-44858-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44858-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44857-7

  • Online ISBN: 978-3-031-44858-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy