Abstract
RGB-D cameras have become essential in robotics for accurate perception and object recognition, enabling robots to navigate environments, avoid obstacles, and manipulate objects precisely. Such cameras, besides RGB information, allow the capture of an additional image that encodes the distance of each point in the scene from the camera. Popular depth acquisition techniques include active stereoscopic, which triangulates two camera views, and Time-of-Flight (T-o-F), based on infrared laser patterns. Despite different technologies, none of them is yet able to provide accurate depth information on the entire image due to various factors such as sunlight, reflective surfaces or high distances from the camera. This leads to noisy or incomplete depth images. Neural network-based solutions have been researched for depth completion, aiming to create dense depth maps using RGB images and sparse depth. This paper presents a comparison of the data provided by different depth-sensing technologies, highlighting their pros and cons in two main benchmark setups. After an analysis of the sensors’ accuracy under different conditions, several state-of-the-art neural networks have been evaluated in an indoor scenario to assess if it is possible to improve the quality of the raw depth images provided by each sensor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lidar camera l515. https://www.intelrealsense.com/lidar-camera-l515/
Stereo depth solution from intel realsense. https://www.intelrealsense.com/stereo-depth/
Chen, Y., Yang, B., Liang, M., Urtasun, R.: Learning joint 2D–3D representations for depth completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10023–10032 (2019)
Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolutional spatial propagation network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–119 (2018)
Dimitrievski, M., Veelaert, P., Philips, W.: Learning morphological operators for depth completion. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 450–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_38
Eldesokey, A., Felsberg, M., Khan, F.S.: Propagating confidences through CNNs for sparse data regression. arXiv preprint arXiv:1805.11913 (2018)
Garnelo, M., et al.: Conditional neural processes. In: International Conference on Machine Learning, pp. 1704–1713. PMLR (2018)
Hu, J., et al.: Deep depth completion from extremely sparse data: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 8244–8264 (2022)
Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PENet: towards precise and efficient image guided depth completion. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13656–13662. IEEE (2021)
Huang, Z., Fan, J., Cheng, S., Yi, S., Wang, X., Li, H.: HMS-Net: hierarchical multi-scale sparsity-invariant network for sparse depth completion. IEEE Trans. Image Process. 29, 3429–3441 (2019)
Imran, S., Long, Y., Liu, X., Morris, D.: Depth coefficients for depth completion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12438–12447. IEEE (2019)
Krogius, M., Haggenmiller, A., Olson, E.: Flexible layouts for fiducial tags. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1898–1903. IEEE (2019)
Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: Fast depth completion on the CPU. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22. IEEE (2018)
Lee, S., Lee, J., Kim, D., Kim, J.: Deep architecture with cross guidance between single image and sparse lidar data for depth completion. IEEE Access 8, 79801–79810 (2020)
Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C.: A multi-scale guided cascade hourglass network for depth completion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 32–40 (2020)
Lu, K., Barnes, N., Anwar, S., Zheng, L.: Depth completion auto-encoder. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 63–73. IEEE (2022)
Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803. IEEE (2018)
Nazir, D., Pagani, A., Liwicki, M., Stricker, D., Afzal, M.Z.: SemAttNet: toward attention-based semantic aware guided depth completion. IEEE Access 10, 120781–120791 (2022)
Park, J., Joo, K., Hu, Z., Liu, C.-K., So Kweon, I.: Non-local spatial propagation network for depth completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 120–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_8
Qi, F., Han, J., Wang, P., Shi, G., Li, F.: Structure guided fusion for depth map inpainting. Pattern Recogn. Lett. 34(1), 70–76 (2013)
Richardt, C., Stoll, C., Dodgson, N.A., Seidel, H.P., Theobalt, C.: Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. In: Computer Graphics Forum, vol. 31, pp. 247–256. Wiley Online Library (2012)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. ECCV 5(7576), 746–760 (2012)
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 2017 International Conference on 3D Vision (3DV), pp. 11–20. IEEE (2017)
Van Gansbeke, W., Neven, D., De Brabandere, B., Van Gool, L.: Sparse and noisy lidar completion with RGB guidance and uncertainty. In: 2019 16th International Conference on Machine Vision Applications (MVA), pp. 1–6. IEEE (2019)
Zennaro, S., et al.: Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Castellano, R., Terreran, M., Ghidoni, S. (2023). Performance Evaluation of Depth Completion Neural Networks for Various RGB-D Camera Technologies in Indoor Scenarios. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-47546-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47545-0
Online ISBN: 978-3-031-47546-7
eBook Packages: Computer ScienceComputer Science (R0)