Skip to main content

Generating Smooth Mood-Dynamic Playlists with Audio Features and KNN

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2024)

Abstract

Users curate music playlists for many purposes, including focus, enjoyment and therapy. Popular music streaming services generate playlists automatically which are constant in genre or mood. We propose a method to automatically create playlists dynamic in both the Arousal-Valence emotion space and the audio features of songs. Our playlist algorithm uses a two-stage approach to sequentially choose songs, employing a K-Nearest Neighbors (KNN) model to gather potential songs based on emotion and analyzing them with acoustic similarity metrics. To evaluate the effectiveness of various audio feature data, KNN parameters, and similarity metrics, we developed a testing protocol which generates playlists that traverse both Arousal-Valence and audio feature spaces. We define evaluation metrics to measure a playlist’s smoothness and evenness using the Pearson correlation coefficient between dimensions and the variance of steps between songs, respectively. Our algorithm successfully creates smooth and evenly-spaced playlists that transition cohesively in both mood and genre. We explore how the choice of audio feature data, similarity metric, and KNN parameters all have an effect on playlists’ smoothness and evenness across these two spaces.

S. Gaur—Work completed at Oregon State University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://musicmachinery.com/2013/01/02/boil-the-frog-2/.

  2. 2.

    https://www.last.fm/.

  3. 3.

    https://developer.spotify.com/documentation/web-api/.

  4. 4.

    https://scikit-learn.org/stable/modules/neighbors.html.

References

  1. Allik, A., Thalmann, F., Sandler, M.: MusicLynx: exploring music through artist similarity graphs. In: Companion Proceedings of the The Web Conference 2018. WWW 2018, pp. 167–170. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2018). https://doi.org/10.1145/3184558.3186970

  2. Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere, P.: The million song dataset. In: Klapuri, A., Leider, C. (eds.) Proceedings of the 12th International Conference on Music Information Retrieval. ISMIR 2011, pp. 591–596. International Society for Music Information Retrieval, Miami (2011). https://doi.org/10.5281/zenodo.1415820

  3. Blood, D.J., Ferriss, S.J.: Effects of background music on anxiety, satisfaction with communication, and productivity. Psychol. Rep. 72(1), 171–177 (1993). https://doi.org/10.2466/pr0.1993.72.1.171

    Article  Google Scholar 

  4. Bonnin, G., Jannach, D.: Automated generation of music playlists: survey and experiments. ACM Comput. Surv. 47(2), 1–35 (2014). https://doi.org/10.1145/2652481

    Article  Google Scholar 

  5. Cardoso, L., Panda, R., Paiva, R.P.: MOODetector: a prototype software tool for mood-based playlist generation. In: Proceedings of the 2nd Portuguese National Symposium on Informatics. INForum 2011, Coimbra, Portugal (2011)

    Google Scholar 

  6. Chen, S., Moore, J.L., Turnbull, D., Joachims, T.: Playlist prediction via metric embedding. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2012, pp. 714–722. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2339530.2339643

  7. Delbouys, R., Hennequin, R., Piccoli, F., Royo-Letelier, J., Moussallam, M.: Music mood detection based on audio and lyrics with deep neural net. In: Gómez, E., Hu, X., Humphrey, E., Benetos, E. (eds.) Proceedings of the 19th International Conference on Music Information Retrieval. ISMIR 2018, pp. 370–375. International Society for Music Information Retrieval, Paris (2018). https://doi.org/10.5281/zenodo.1492427

  8. Deng, J.J., Leung, C.: Emotion-based music recommendation using audio features and user playlist. In: 6th International Conference on New Trends in Information Science, Service Science and Data Mining. ISSDM 2012, pp. 796–801. Institute of Electrical and Electronics Engineers, Taipei (2012)

    Google Scholar 

  9. Donnelly, P., Gaur, S.: Mood Dynamic Playlist: interpolating a musical path between emotions using a KNN algorithm. In: Ahram, T., Taiar, R. (eds.) Proceedings of the 9th International Conference on Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications. IHIET-AI 2022, vol. 23. AHFE Open Access (2022). https://doi.org/10.54941/ahfe100894

  10. Donohoe, R., McNeely, T.: The effect of student music choice on writing productivity. Technical report ED448472, US Department of Education (1999)

    Google Scholar 

  11. Feldman, S.: Music affects productivity. Manag. Rev. 80(7), 6–7 (1991)

    Google Scholar 

  12. Flexer, A., Schnitzer, D., Gasser, M., Widmer, G.: Playlist generation using start and end songs. In: Bello, J.P., Chew, E., Turnbull, D. (eds.) Proceedings of the 9th International Conference on Music Information Retrieval. ISMIR 2008, pp. 173–178. International Society of Music Information Retrieval, Philadelphia (2008). https://doi.org/10.5281/zenodo.1418272

  13. Flint, M.: The effects of music on physical productivity. Ph.D. thesis, The Ohio State University (2010)

    Google Scholar 

  14. Fox, J., Embrey, E.: Music – an aid to productivity. Appl. Ergon. 3(4), 202–205 (1972). https://doi.org/10.1016/0003-6870(72)90101-9

    Article  Google Scholar 

  15. Kellogg, R.T.: Writing habits and productivity in technical writing. Technical report ED249502, US Department of Education (1982)

    Google Scholar 

  16. Kim, H.G., Kim, G.Y., Kim, J.Y.: Music recommendation system using human activity recognition from accelerometer data. Trans. Consum. Electron. 65(3), 349–358 (2019). https://doi.org/10.1109/TCE.2019.2924177

    Article  Google Scholar 

  17. Lesiuk, T.: The effect of music listening on work performance. Psychol. Music 33(2), 173–191 (2005). https://doi.org/10.1177/0305735605050650

    Article  Google Scholar 

  18. Liebman, E., Saar-Tsechansky, M., Stone, P.: DJ-MC: a reinforcement-learning agent for music playlist recommendation. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. AAMAS 2015, pp. 591–599. International Foundation for Autonomous Agents and Multiagent Systems, Istanbul (2015). https://doi.org/10.5555/2772879.2772954

  19. Ludewig, M., Kamehkhosh, I., Landia, N., Jannach, D.: Effective nearest-neighbor music recommendations. In: Proceedings of the ACM Recommender Systems Challenge 2018. RecSys Challenge 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3267471.3267474

  20. Marimont, R.B., Sharpiro, M.B.: Nearest neighbour searches and the curse of dimensionality. IMA J. Appl. Math. 24(1), 59–70 (1979). https://doi.org/10.1093/imamat/24.1.59

    Article  Google Scholar 

  21. Mayer-Benarous, H., Benarous, X., Vonthron, F., Cohen, D.: Music therapy for children with autistic spectrum disorder and/or other neurodevelopmental disorders: a systematic review. Front. Psychiatry 12, 643234 (2021). https://doi.org/10.3389/fpsyt.2021.643234

    Article  Google Scholar 

  22. Meyers, O.C.: A mood-based music classification and exploration system. Master’s thesis, Massachusetts Institute of Technology, Cambridge, USA (2007)

    Google Scholar 

  23. Moscato, V., Picariello, A., Sperlí, G.: An emotional recommender system for music. IEEE Intell. Syst. 36(5), 57–68 (2021). https://doi.org/10.1109/MIS.2020.3026000

    Article  Google Scholar 

  24. Nathan, K.S., Arun, M., Kannan, M.S.: EMOSIC - an emotion based music player for Android. In: Proceedings of the 17th IEEE International Symposium on Signal Processing and Information Technology. ISSPIT 2017, pp. 371–276. Institute of Electrical and Electronics Engineers, Bilbao (2017). https://doi.org/10.1109/ISSPIT.2017.8388671

  25. Pampalk, E., Pohle, T., Widmer, G.: Dynamic playlist generation based on skipping behavior. In: Proceedings of the 6th International Conference on Music Information Retrieval. ISMIR 2005, pp. 634–637. International Society of Music Information Retrieval, Victoria (2005). https://doi.org/10.5281/zenodo.1414932

  26. Panda, R., Redinho, H., Gonçalves, C., Malheiro, R., Paiva, R.P.: How does the Spotify API compare to the music emotion recognition state-of-the-art? In: Mauro, D.A., Spagnol, S., Valle, A. (eds.) Proceedings of the 18th Sound and Music Computing Conference. SMC 2021. Axea sas/SMC Network, Virtual, pp. 238–245 (2021). https://doi.org/10.5281/zenodo.5045100

  27. Pauws, S., Verhaegh, W., Vossen, M.: Music playlist generation by adapted simulated annealing. Inf. Sci. 178(3), 647–662 (2008). https://doi.org/10.1016/j.ins.2007.08.019

    Article  Google Scholar 

  28. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://doi.org/10.48550/arXiv.1201.0490

    Article  MathSciNet  Google Scholar 

  29. Rosen, P., Quadri, G.J.: LineSmooth: an analytical framework for evaluating the effectiveness of smoothing techniques on line charts. IEEE Trans. Vis. Comput. Graph. 27(2), 1536–1546 (2021). https://doi.org/10.1109/TVCG.2020.3030421

    Article  Google Scholar 

  30. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980). https://doi.org/10.1037/h0077714

    Article  Google Scholar 

  31. Sakurai, K., Togo, R., Ogawa, T., Haseyama, M.: Music playlist generation based on graph exploration using reinforcement learning. In: Proceedings of the IEEE 3rd Global Conference on Life Sciences and Technologies. LifeTech 2021, pp. 53–54. Institute of Electrical and Electronics Engineers, Nara (2021). https://doi.org/10.1109/LifeTech52111.2021.9391870

  32. Sen, A., Popat, D., Shah, H., Kuwor, P., Johri, E.: Music playlist generation using facial expression analysis and task extraction. Annales Universitatis Mariae Curie-Sklodowska, sectio AI - Informatica 16(2), 1–6 (2017). https://doi.org/10.17951/ai.2016.16.2.1

    Article  Google Scholar 

  33. Song, Y., Dixon, S., Pearce, M.T., Halpern, A.R.: Perceived and induced emotion responses to popular music: categorical and dimensional models. Music. Percept. 33(4), 472–492 (2016). https://doi.org/10.1525/mp.2016.33.4.472

    Article  Google Scholar 

  34. White, K.N.: The effects of background music in the classroom on the productivity, motivation, and behavior of fourth grade students. Master’s thesis, Columbia College, Columbia, SC, USA (2007)

    Google Scholar 

  35. Yeo, I.K., Johnson, R.A.: A new family of power transformations to improve normality or symmetry. Biometrika 87(4), 954–959 (2000). https://doi.org/10.1093/biomet/87.4.954

    Article  MathSciNet  Google Scholar 

  36. Zamani, H., Schedl, M., Lamere, P., Chen, C.W.: An analysis of approaches taken in the ACM RecSys Challenge 2018 for automatic music playlist continuation. ACM Trans. Intell. Syst. Technol. 10(5), 1–21 (2019). https://doi.org/10.1145/3344257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaurya Gaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaur, S., Donnelly, P.J. (2024). Generating Smooth Mood-Dynamic Playlists with Audio Features and KNN. In: Johnson, C., Rebelo, S.M., Santos, I. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2024. Lecture Notes in Computer Science, vol 14633. Springer, Cham. https://doi.org/10.1007/978-3-031-56992-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56992-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56991-3

  • Online ISBN: 978-3-031-56992-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy