Skip to main content

Visual Representation of Resource Analysis Insights for Process Mining

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2024, EMMSAD 2024)

Abstract

Resource analysis is an area of process mining concerned with the behavior and performance of resources within business processes. Recent contributions in this field have predominantly focused on gaining specific insights, less so on their visual representation. In this paper, we propose a resource analytics technique that focuses on effective visualization of the analysis. Our technique allows us to analyze the allocation and performance of single resource units and roles within a business process. We evaluate our technique using a prototypical implementation.

J. Mendling—The research of the authors was supported by the Einstein Foundation Berlin under grant EPP-2019-524, by the German Federal Ministry of Education and Research under grant 16DII133, and by Deutsche Forschungsgemeinschaft under grant ME 3711/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/MaxVidgof/resource-analytics.

  2. 2.

    https://plotly.com/python/.

  3. 3.

    https://fluxicon.com/disco/files/Disco-Demo-Logs.zip.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Support. Coop. Work 14(6), 549–593 (2005)

    Article  Google Scholar 

  3. Alroobaea, R., Mayhew, P.J.: How many participants are really enough for usability studies? In: 2014 Proceedings of the Science and Information Conference, London, UK, 27–29 August 2014, pp. 48–56 (2014)

    Google Scholar 

  4. Augusto, A., et al.: Automated discovery of process models from event logs: Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

    Article  Google Scholar 

  5. Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment: opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)

    Article  Google Scholar 

  6. Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of roles. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2013, Singapore, 16–19 April 2013, pp. 103–110. IEEE (2013)

    Google Scholar 

  7. Compeau, D., Marcolin, B., Kelley, H., Higgins, C.: Research commentary-generalizability of information systems research using student subjects-a reflection on our practices and recommendations for future research. Inf. Syst. Res. 23(4), 1093–1109 (2012)

    Article  Google Scholar 

  8. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 319–340 (1989)

    Google Scholar 

  9. Deokar, A.V., Tao, J.: OrgMiner: a framework for discovering user-related process intelligence from event logs. Inf. Syst. Front. 23(3), 753–772 (2021)

    Article  Google Scholar 

  10. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)

    Book  Google Scholar 

  11. Estrada-Torres, B., Camargo, M., Dumas, M., García-Bañuelos, L., Mahdy, I., Yerokhin, M.: Discovering business process simulation models in the presence of multitasking and availability constraints. Data Knowl. Eng. 134, 101897 (2021)

    Article  Google Scholar 

  12. Ferreira, D.R., Alves, C.: Discovering user communities in large event logs. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011, Part I. LNBIP, vol. 99, pp. 123–134. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_11

    Chapter  Google Scholar 

  13. Ingh, L.V.D., Eshuis, R., Gelper, S.: Assessing performance of mined business process variants. Enterp. Inf. Syst. 15(5), 676–693 (2021)

    Article  Google Scholar 

  14. Kaur, H., Mendling, J., Rubensson, C., Kampik, T.: Timeline-based process discovery. CoRR abs/2401.04114 (2024)

    Google Scholar 

  15. Kumar, A., Dijkman, R., Song, M.: Optimal resource assignment in workflows for maximizing cooperation. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 235–250. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_20

    Chapter  Google Scholar 

  16. Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availability calendars of a process from an event log. Inf. Syst. 88 (2020)

    Google Scholar 

  17. Moody, D.L.: The “physics’’ of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

    Article  Google Scholar 

  18. Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst. 8(1), 1:1–1:30 (2017)

    Google Scholar 

  19. Schönig, S., Cabanillas, C., Ciccio, C.D., Jablonski, S., Mendling, J.: Mining team compositions for collaborative work in business processes. Softw. Syst. Model. 17(2), 675–693 (2018)

    Article  Google Scholar 

  20. Schroeder, W.J., Martin, K.M.: 1 - overview of visualization. In: Hansen, C.D., Johnson, C.R. (eds.) Visualization Handbook, pp. 3–35. Butterworth-Heinemann, Burlington (2005)

    Chapter  Google Scholar 

  21. Scott, J.: What is Social Network Analysis? Bloomsbury Academic (2012)

    Google Scholar 

  22. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)

    Article  Google Scholar 

  23. Suriadi, S., Wynn, M.T., Xu, J., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Discovering work prioritisation patterns from event logs. Decis. Support Syst. 100, 77–92 (2017)

    Article  Google Scholar 

  24. Taymouri, F., Rosa, M.L., Dumas, M., Maggi, F.M.: Business process variant analysis: survey and classification. Knowl. Based Syst. 211, 106557 (2021)

    Article  Google Scholar 

  25. Thomas, J.J., Cook, K.A. (eds.): Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Center (2005). ISBN 0-7695-2323-4

    Google Scholar 

  26. Yang, J., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M., Yu, Y.: OrdinoR: a framework for discovering, evaluating, and analyzing organizational models using event logs. Decis. Support Syst. 158, 113771 (2022)

    Article  Google Scholar 

  27. Yang, J., Ouyang, C., ter Hofstede, A.H.M., van der Aalst, W.M.P., Leyer, M.: Seeing the forest for the trees: group-oriented workforce analytics. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 345–362. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_22

    Chapter  Google Scholar 

  28. Yeshchenko, A., Mendling, J.: A survey of approaches for event sequence analysis and visualization using the ESeVis framework. CoRR abs/2202.07941 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Vidgof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoogmoed, A., Vidgof, M., Djurica, D., Rubensson, C., Mendling, J. (2024). Visual Representation of Resource Analysis Insights for Process Mining. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61007-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61006-6

  • Online ISBN: 978-3-031-61007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy