Abstract
Resource analysis is an area of process mining concerned with the behavior and performance of resources within business processes. Recent contributions in this field have predominantly focused on gaining specific insights, less so on their visual representation. In this paper, we propose a resource analytics technique that focuses on effective visualization of the analysis. Our technique allows us to analyze the allocation and performance of single resource units and roles within a business process. We evaluate our technique using a prototypical implementation.
J. Mendling—The research of the authors was supported by the Einstein Foundation Berlin under grant EPP-2019-524, by the German Federal Ministry of Education and Research under grant 16DII133, and by Deutsche Forschungsgemeinschaft under grant ME 3711/2-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Support. Coop. Work 14(6), 549–593 (2005)
Alroobaea, R., Mayhew, P.J.: How many participants are really enough for usability studies? In: 2014 Proceedings of the Science and Information Conference, London, UK, 27–29 August 2014, pp. 48–56 (2014)
Augusto, A., et al.: Automated discovery of process models from event logs: Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)
Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment: opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)
Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of roles. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2013, Singapore, 16–19 April 2013, pp. 103–110. IEEE (2013)
Compeau, D., Marcolin, B., Kelley, H., Higgins, C.: Research commentary-generalizability of information systems research using student subjects-a reflection on our practices and recommendations for future research. Inf. Syst. Res. 23(4), 1093–1109 (2012)
Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 319–340 (1989)
Deokar, A.V., Tao, J.: OrgMiner: a framework for discovering user-related process intelligence from event logs. Inf. Syst. Front. 23(3), 753–772 (2021)
Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)
Estrada-Torres, B., Camargo, M., Dumas, M., García-Bañuelos, L., Mahdy, I., Yerokhin, M.: Discovering business process simulation models in the presence of multitasking and availability constraints. Data Knowl. Eng. 134, 101897 (2021)
Ferreira, D.R., Alves, C.: Discovering user communities in large event logs. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011, Part I. LNBIP, vol. 99, pp. 123–134. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_11
Ingh, L.V.D., Eshuis, R., Gelper, S.: Assessing performance of mined business process variants. Enterp. Inf. Syst. 15(5), 676–693 (2021)
Kaur, H., Mendling, J., Rubensson, C., Kampik, T.: Timeline-based process discovery. CoRR abs/2401.04114 (2024)
Kumar, A., Dijkman, R., Song, M.: Optimal resource assignment in workflows for maximizing cooperation. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 235–250. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_20
Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availability calendars of a process from an event log. Inf. Syst. 88 (2020)
Moody, D.L.: The “physics’’ of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)
Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst. 8(1), 1:1–1:30 (2017)
Schönig, S., Cabanillas, C., Ciccio, C.D., Jablonski, S., Mendling, J.: Mining team compositions for collaborative work in business processes. Softw. Syst. Model. 17(2), 675–693 (2018)
Schroeder, W.J., Martin, K.M.: 1 - overview of visualization. In: Hansen, C.D., Johnson, C.R. (eds.) Visualization Handbook, pp. 3–35. Butterworth-Heinemann, Burlington (2005)
Scott, J.: What is Social Network Analysis? Bloomsbury Academic (2012)
Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)
Suriadi, S., Wynn, M.T., Xu, J., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Discovering work prioritisation patterns from event logs. Decis. Support Syst. 100, 77–92 (2017)
Taymouri, F., Rosa, M.L., Dumas, M., Maggi, F.M.: Business process variant analysis: survey and classification. Knowl. Based Syst. 211, 106557 (2021)
Thomas, J.J., Cook, K.A. (eds.): Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Center (2005). ISBN 0-7695-2323-4
Yang, J., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M., Yu, Y.: OrdinoR: a framework for discovering, evaluating, and analyzing organizational models using event logs. Decis. Support Syst. 158, 113771 (2022)
Yang, J., Ouyang, C., ter Hofstede, A.H.M., van der Aalst, W.M.P., Leyer, M.: Seeing the forest for the trees: group-oriented workforce analytics. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 345–362. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_22
Yeshchenko, A., Mendling, J.: A survey of approaches for event sequence analysis and visualization using the ESeVis framework. CoRR abs/2202.07941 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hoogmoed, A., Vidgof, M., Djurica, D., Rubensson, C., Mendling, J. (2024). Visual Representation of Resource Analysis Insights for Process Mining. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-61007-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61006-6
Online ISBN: 978-3-031-61007-3
eBook Packages: Computer ScienceComputer Science (R0)