Skip to main content

Visualizing Brain Synchronization: An Explainable Representation of Phase-Amplitude Coupling

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

In the realm of neuroscience, brain activity is often characterized by rhythmic oscillations at different frequency bands. These oscillations underlie various cognitive processes and constitutes the basis of communication between populations of neurons. Cross-frequency coupling (CFC) refers to techniques directed to study the interactions between oscillations at different frequencies, providing a more comprehensive view of neural dynamics than traditional measures of connectivity or based on the distribution of the power spectral density. In this paper, we propose a method to explore CFC local patterns in an explainable way, allowing to visualize them over time and to easily identify functional brain areas activated during a task development from the Phase-Amplitude Coupling (PAC) point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leeduca project. university of málaga. www.leeduca.uma.es. Accessed 20 Jan 2024

  2. Attaheri, A., et al.: Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants. bioRxiv p. 2020.10.12.329326, March 2021. https://doi.org/10.1101/2020.10.12.329326

  3. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks, February 2016

    Google Scholar 

  4. Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), 506–515 (2010)

    Article  Google Scholar 

  5. Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  6. De Vos, A., Vanvooren, S., Vanderauwera, J., Ghesquière, P., Wouters, J.: A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia. Cortex 93, 206–219 (2017)

    Article  Google Scholar 

  7. Di Liberto, G.M., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.C.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018). https://doi.org/10.1016/j.neuroimage.2018.03.072

    Article  Google Scholar 

  8. Duin, R.P.: Classifiers in almost empty spaces. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 2, pp. 1–7. IEEE (2000)

    Google Scholar 

  9. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Statist. 29, 1189–1232 (2000). https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  Google Scholar 

  10. Juan M. Górriz, et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078, https://www.sciencedirect.com/science/article/pii/S0925231220309292

  11. Juan M. Górriz, et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023). https://doi.org/10.1016/j.inffus.2023.101945, https://www.sciencedirect.com/science/article/pii/S1566253523002610

  12. Lizarazu, M., Carreiras, M., Molinaro, N.: Theta-gamma phase-amplitude coupling in auditory cortex is modulated by language proficiency. Human Brain Mapping 44(7), 2862–2872 (2023). https://doi.org/10.1002/hbm.26250, https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.26250

  13. Lizarazu, M., Lallier, M., Molinaro, N.: Phase-amplitude coupling between theta and gamma oscillations adapts to speech rate. Ann. N. Y. Acad. Sci. 1453(1), 140–152 (2019)

    Article  Google Scholar 

  14. Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-synchrony speech entrainment in developmental dyslexia. Human Brain Mapping 37, 2767–2783 (2016)

    Article  Google Scholar 

  15. Ortiz, A., López, P.J., Luque, J.L., Martínez-Murcia, F.J., Aquino-Britez, D.A., Ortega, J.: An anomaly detection approach for dyslexia diagnosis using EEG signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019. LNCS, vol. 11486, pp. 369–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_38

    Chapter  Google Scholar 

  16. Penny, W., Duzel, E., Miller, K., Ojemann, J.: Testing for nested oscillation. J. Neurosci. Methods 174(1), 50–61 (2008). https://doi.org/10.1016/j.jneumeth.2008.06.035, https://www.sciencedirect.com/science/article/pii/S0165027008003816

  17. Snyder, J.P.: Map projections: a working manual. Technical report 1395, U.S. Government Printing Office (1987). https://doi.org/10.3133/pp1395

  18. Tort, A.B.L., Komorowski, R., Eichenbaum, H., Kopell, N.: Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104(2), 1195–1210 (2010)

    Article  Google Scholar 

  19. Upton, G., Cook, I.: A Dictionary of Statistics. Oxford University Press (2008). https://doi.org/10.1093/acref/9780199541454.001.0001

Download references

Acknowledgements

This research is part of the PID2022-137461NB-C32, PID2022-137629OA-I00 and PID2022-137451OB-I00 projects, funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU, as well as UMA20-FEDERJA-086 (Consejería de Economía y Conocimiento, Junta de Andalucía) and by ERDF/EU. Work by D.C.B. is part of the grant FJC2021-048082-I funded by MICIU/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR. Work by I.R.-R. is funded by Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ortiz, A., Gallego-Molina, N.J., Castillo-Barnes, D., Rodríguez-Rodríguez, I., Górriz, J.M. (2024). Visualizing Brain Synchronization: An Explainable Representation of Phase-Amplitude Coupling. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy