Skip to main content

A Reaction-Diffusion Cellular Automata Model for Mycelium-Based Engineered Living Materials Evolution

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2024)

Abstract

Engineered living materials (ELMs) and, more specifically, mycelium-based ELMs have been proposed as a solution to address the escalating societal pressures related to human-induced environmental disruption, scarcity of resources, and the anticipated increase in material demand. However, due to the complex biological mechanisms they emulate, their environmental sensitivity, slow supply chain and regulations, these devices present significant challenges for reproduction. Consequently, modeling the phenomena underlying such devices becomes critically important. In this context, we introduce a comprehensive my-celium-based ELM framework that incorporates reaction-diffusion processes and the modeling tool of Cellular Automata (CA). This framework successfully simulates the ELM’s unpredictable growth mechanisms and closely resembles the mycelium’s biological structure through the exploitation of the reaction-diffusion activator-inhibitor system. Finally, an augmented 3D version is presented that enhances the realism of our findings and strives to provide a deeper understanding of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamatzky, A.: Cellular Automata: A Volume in the Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2018). https://doi.org/10.1007/978-1-4939-8700-9

  2. Adamatzky, A.: Fungal Machines: Sensing and Computing with Fungi, vol. 47. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38336-6

    Book  Google Scholar 

  3. Ahangaran, M., Taghizadeh, N., Beigy, H.: Associative cellular learning automata and its applications. Appl. Soft Comput. 53, 1–18 (2017)

    Article  Google Scholar 

  4. Angelova, G.V., Brazkova, M.S., Krastanov, A.I.: Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review. Zeitschrift für Naturforschung C 76(11–12), 431–442 (2021)

    Article  Google Scholar 

  5. Antinori, M.E., et al.: Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci. Rep. 11(1), 12630 (2021)

    Article  Google Scholar 

  6. Boswell, G.P.: Modelling mycelial networks in structured environments. Mycol. Res. 112(9), 1015–1025 (2008)

    Article  Google Scholar 

  7. Chatzinikolaou, T.P., et al.: Wave cellular automata for computing applications. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3463–3467. IEEE (2022)

    Google Scholar 

  8. Chatzipaschalis, I.K., Chatzinikolaou, T.P., Fyrigos, I.A., Adamatzky, A., Rubio, A., Sirakoulis, G.C.: Memristor-based cellular automata for natural language processing. In: 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 1–4. IEEE (2023)

    Google Scholar 

  9. Davidson, F., Sleeman, B., Rayner, A., Crawford, J., Ritz, K.: Large-scale behavior of fungal mycelia. Math. Comput. Model. 24(10), 81–87 (1996)

    Article  Google Scholar 

  10. Elsacker, E., Zhang, M., Dade-Robertson, M.: Fungal engineered living materials: the viability of pure mycelium materials with self-healing functionalities. Adv. Func. Mater. 33(29), 2301875 (2023)

    Article  Google Scholar 

  11. Fricker, M.D., Heaton, L.L., Jones, N.S., Boddy, L.: The mycelium as a network. Fungal Kingdom 335–367 (2017)

    Google Scholar 

  12. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  13. Heide, A., Wiebe, P., Sabantina, L., Ehrmann, A.: Suitability of mycelium-reinforced nanofiber mats for filtration of different dyes. Polymers 15(19) (2023)

    Google Scholar 

  14. Karana, E., Blauwhoff, D., Hultink, E.J., Camere, S.: When the material grows: a case study on designing (with) mycelium-based materials. Int. J. Design 12(2) (2018)

    Google Scholar 

  15. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  Google Scholar 

  16. Kong, H., Akakin, H.C., Sarma, S.E.: A generalized Laplacian of Gaussian filter for blob detection and its applications. IEEE Trans. Cybern. 43(6), 1719–1733 (2013)

    Article  Google Scholar 

  17. Krull, R., Cordes, C., Horn, H., Kampen, I., Kwade, A., Neu, T.R., Nörtemann, B.: Morphology of filamentous fungi: linking cellular biology to process engineering using aspergillus niger. Biosyst. Eng. II: Linking Cell. Netw. Bioprocess. 1–21 (2010)

    Google Scholar 

  18. Landge, A.N., Jordan, B.M., Diego, X., Müller, P.: Pattern formation mechanisms of self-organizing reaction-diffusion systems. Dev. Biol. 460(1), 2–11 (2020)

    Article  Google Scholar 

  19. Liu, A.P., et al.: The living interface between synthetic biology and biomaterial design. Nat. Mater. 21(4), 390–397 (2022)

    Article  Google Scholar 

  20. Liu, S., Xu, W.: Engineered living materials-based sensing and actuation. Frontiers in Sensors 1 (2020)

    Google Scholar 

  21. Mora-Boza, A., Acosta, S., Puertas-Bartolomé, M.: Chapter 9 - biopolymers for the development of living materials for biomedical applications. In: Sessini, V., Ghosh, S., Mosquera, M.E. (eds.) Biopolymers, pp. 263–294. Elsevier (2023)

    Google Scholar 

  22. Neumann, J.V.: Theory of Self-reproducing Automata. University of Illinois Press (1966)

    Google Scholar 

  23. Nguyen, P.Q., Courchesne, N.M.D., Duraj-Thatte, A., Praveschotinunt, P., Joshi, N.S.: Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30(19), 1704847 (2018)

    Article  Google Scholar 

  24. O’Reilly, R.C., Beck, J.M.: A family of large-stencil discrete Laplacian approximations in three-dimensions. Int. J. Numer. Methods Eng. 1–16 (2006)

    Google Scholar 

  25. Regalado, C., Crawford, J., Ritz, K., Sleeman, B.: The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycol. Res. 100(12), 1473–1480 (1996)

    Article  Google Scholar 

  26. Rodrigo-Navarro, A., Sankaran, S., Dalby, M.J., del Campo, A., Salmeron-Sanchez, M.: Engineered living biomaterials. Nat. Rev. Mater. 6(12), 1175–1190 (2021)

    Article  Google Scholar 

  27. Sugimura, K., Shimono, K., Uemura, T., Mochizuki, A.: Self-organizing mechanism for development of space-filling neuronal dendrites. PLOS Comput.l Biol. 3(11), 1–12 (2007)

    MathSciNet  Google Scholar 

  28. Van Gorder, R.A.: A theory of pattern formation for reaction-diffusion systems on temporal networks. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 477(2247), 20200753 (2021)

    Article  MathSciNet  Google Scholar 

  29. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. CRC Press (2018)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the framework of the FUNGATERIA project, which has received funding from the European Union’s HORIZON-EIC-2021-PATHFINDER CHALLENGES program under grant agreement No. 101071145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Tompris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tompris, I. et al. (2024). A Reaction-Diffusion Cellular Automata Model for Mycelium-Based Engineered Living Materials Evolution. In: Bagnoli, F., Baetens, J., Bandini, S., Matteuzzi, T. (eds) Cellular Automata. ACRI 2024. Lecture Notes in Computer Science, vol 14978. Springer, Cham. https://doi.org/10.1007/978-3-031-71552-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71552-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71551-8

  • Online ISBN: 978-3-031-71552-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy