Abstract
Engineered living materials (ELMs) and, more specifically, mycelium-based ELMs have been proposed as a solution to address the escalating societal pressures related to human-induced environmental disruption, scarcity of resources, and the anticipated increase in material demand. However, due to the complex biological mechanisms they emulate, their environmental sensitivity, slow supply chain and regulations, these devices present significant challenges for reproduction. Consequently, modeling the phenomena underlying such devices becomes critically important. In this context, we introduce a comprehensive my-celium-based ELM framework that incorporates reaction-diffusion processes and the modeling tool of Cellular Automata (CA). This framework successfully simulates the ELM’s unpredictable growth mechanisms and closely resembles the mycelium’s biological structure through the exploitation of the reaction-diffusion activator-inhibitor system. Finally, an augmented 3D version is presented that enhances the realism of our findings and strives to provide a deeper understanding of such materials.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamatzky, A.: Cellular Automata: A Volume in the Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2018). https://doi.org/10.1007/978-1-4939-8700-9
Adamatzky, A.: Fungal Machines: Sensing and Computing with Fungi, vol. 47. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38336-6
Ahangaran, M., Taghizadeh, N., Beigy, H.: Associative cellular learning automata and its applications. Appl. Soft Comput. 53, 1–18 (2017)
Angelova, G.V., Brazkova, M.S., Krastanov, A.I.: Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review. Zeitschrift für Naturforschung C 76(11–12), 431–442 (2021)
Antinori, M.E., et al.: Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci. Rep. 11(1), 12630 (2021)
Boswell, G.P.: Modelling mycelial networks in structured environments. Mycol. Res. 112(9), 1015–1025 (2008)
Chatzinikolaou, T.P., et al.: Wave cellular automata for computing applications. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3463–3467. IEEE (2022)
Chatzipaschalis, I.K., Chatzinikolaou, T.P., Fyrigos, I.A., Adamatzky, A., Rubio, A., Sirakoulis, G.C.: Memristor-based cellular automata for natural language processing. In: 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 1–4. IEEE (2023)
Davidson, F., Sleeman, B., Rayner, A., Crawford, J., Ritz, K.: Large-scale behavior of fungal mycelia. Math. Comput. Model. 24(10), 81–87 (1996)
Elsacker, E., Zhang, M., Dade-Robertson, M.: Fungal engineered living materials: the viability of pure mycelium materials with self-healing functionalities. Adv. Func. Mater. 33(29), 2301875 (2023)
Fricker, M.D., Heaton, L.L., Jones, N.S., Boddy, L.: The mycelium as a network. Fungal Kingdom 335–367 (2017)
Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)
Heide, A., Wiebe, P., Sabantina, L., Ehrmann, A.: Suitability of mycelium-reinforced nanofiber mats for filtration of different dyes. Polymers 15(19) (2023)
Karana, E., Blauwhoff, D., Hultink, E.J., Camere, S.: When the material grows: a case study on designing (with) mycelium-based materials. Int. J. Design 12(2) (2018)
Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)
Kong, H., Akakin, H.C., Sarma, S.E.: A generalized Laplacian of Gaussian filter for blob detection and its applications. IEEE Trans. Cybern. 43(6), 1719–1733 (2013)
Krull, R., Cordes, C., Horn, H., Kampen, I., Kwade, A., Neu, T.R., Nörtemann, B.: Morphology of filamentous fungi: linking cellular biology to process engineering using aspergillus niger. Biosyst. Eng. II: Linking Cell. Netw. Bioprocess. 1–21 (2010)
Landge, A.N., Jordan, B.M., Diego, X., Müller, P.: Pattern formation mechanisms of self-organizing reaction-diffusion systems. Dev. Biol. 460(1), 2–11 (2020)
Liu, A.P., et al.: The living interface between synthetic biology and biomaterial design. Nat. Mater. 21(4), 390–397 (2022)
Liu, S., Xu, W.: Engineered living materials-based sensing and actuation. Frontiers in Sensors 1 (2020)
Mora-Boza, A., Acosta, S., Puertas-Bartolomé, M.: Chapter 9 - biopolymers for the development of living materials for biomedical applications. In: Sessini, V., Ghosh, S., Mosquera, M.E. (eds.) Biopolymers, pp. 263–294. Elsevier (2023)
Neumann, J.V.: Theory of Self-reproducing Automata. University of Illinois Press (1966)
Nguyen, P.Q., Courchesne, N.M.D., Duraj-Thatte, A., Praveschotinunt, P., Joshi, N.S.: Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30(19), 1704847 (2018)
O’Reilly, R.C., Beck, J.M.: A family of large-stencil discrete Laplacian approximations in three-dimensions. Int. J. Numer. Methods Eng. 1–16 (2006)
Regalado, C., Crawford, J., Ritz, K., Sleeman, B.: The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycol. Res. 100(12), 1473–1480 (1996)
Rodrigo-Navarro, A., Sankaran, S., Dalby, M.J., del Campo, A., Salmeron-Sanchez, M.: Engineered living biomaterials. Nat. Rev. Mater. 6(12), 1175–1190 (2021)
Sugimura, K., Shimono, K., Uemura, T., Mochizuki, A.: Self-organizing mechanism for development of space-filling neuronal dendrites. PLOS Comput.l Biol. 3(11), 1–12 (2007)
Van Gorder, R.A.: A theory of pattern formation for reaction-diffusion systems on temporal networks. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 477(2247), 20200753 (2021)
Wolfram, S.: Cellular Automata and Complexity: Collected Papers. CRC Press (2018)
Acknowledgments
This work has been supported by the framework of the FUNGATERIA project, which has received funding from the European Union’s HORIZON-EIC-2021-PATHFINDER CHALLENGES program under grant agreement No. 101071145.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tompris, I. et al. (2024). A Reaction-Diffusion Cellular Automata Model for Mycelium-Based Engineered Living Materials Evolution. In: Bagnoli, F., Baetens, J., Bandini, S., Matteuzzi, T. (eds) Cellular Automata. ACRI 2024. Lecture Notes in Computer Science, vol 14978. Springer, Cham. https://doi.org/10.1007/978-3-031-71552-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-71552-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71551-8
Online ISBN: 978-3-031-71552-5
eBook Packages: Computer ScienceComputer Science (R0)