Skip to main content

URCDM: Ultra-Resolution Image Synthesis in Histopathology

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Diagnosing medical conditions from histopathology data requires a thorough analysis across the various resolutions of Whole Slide Images (WSI). However, existing generative methods fail to consistently represent the hierarchical structure of WSIs due to a focus on high-fidelity patches. To tackle this, we propose Ultra-Resolution Cascaded Diffusion Models (URCDMs) which are capable of synthesising entire histopathology images at high resolutions whilst authentically capturing the details of both the underlying anatomy and pathology at all magnification levels. We evaluate our method on three separate datasets, consisting of brain, breast and kidney tissue, and surpass existing state-of-the-art multi-resolution models. Furthermore, an expert evaluation study was conducted, demonstrating that URCDMs consistently generate outputs across various resolutions that trained evaluators cannot distinguish from real images. All code and additional examples can be found on GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cechnicka, S., Ball, J., Reynaud, H., Arthurs, C., Roufosse, C., Kainz, B.: Realistic data enrichment for robust image segmentation in histopathology. In: Koch, L., Cardoso, M.J., Ferrante, E., Kamnitsas, K., Islam, M., Jiang, M., Rieke, N., Tsaftaris, S.A., Yang, D. (eds.) Domain Adaptation and Representation Transfer. pp. 63–72. Springer Nature Switzerland, Cham (2024)

    Chapter  Google Scholar 

  2. Chai, L., Gharbi, M., Shechtman, E., Isola, P., Zhang, R.: Any-resolution training for high-resolution image synthesis. In: European Conference on Computer Vision (2022)

    Google Scholar 

  3. Cheng, Y.C., Lin, C.H., Lee, H.Y., Ren, J., Tulyakov, S., Yang, M.H.: Inout: Diverse image outpainting via gan inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11431–11440 (2022)

    Google Scholar 

  4. Ciga, O., Xu, T., Nofech-Mozes, S., Noy, S., Lu, F.I., Martel, A.L.: Overcoming the limitations of patch-based learning to detect cancer in whole slide images. Scientific Reports | 11,  8894 (123). https://doi.org/10.1038/s41598-021-88494-z

  5. Etten, A.V.: You only look twice: Rapid multi-scale object detection in satellite imagery (2018)

    Google Scholar 

  6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  7. Gupta, L., Klinkhammer, B.M., Boor, P., Merhof, D., Gadermayr, M.: Gan-based image enrichment in digital pathology boosts segmentation accuracy. In: MICCAI 2019, Part I 22. pp. 631–639. Springer (2019)

    Google Scholar 

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium (2017). https://doi.org/10.48550/ARXIV.1706.08500, https://arxiv.org/abs/1706.08500

  9. Jose, L., Liu, S., Russo, C., Nadort, A., Di Ieva, A.: Generative adversarial networks in digital pathology and histopathological image processing: A review. Journal of Pathology Informatics 12(1),  43 (2021). https://doi.org/10.4103/jpi.jpi_103_20, https://www.sciencedirect.com/science/article/pii/S2153353922001651

  10. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.: Alias-free generative adversarial networks. In: Proc. NeurIPS (2021)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  12. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models. CoRR abs/1904.06991 (2019)

    Google Scholar 

  13. Laak, J., Litjens, G., Ciompi, F.: Deep learning in histopathology: the path to the clinic. Nature Medicine (2021). https://doi.org/10.1038/s41591-021-01343-4, https://doi.org/10.1038/s41591-021-01343-4

  14. Lin, Y., Wang, Z., Cheng, K.T., Chen, H.: Insmix: Towards realistic generative data augmentation for nuclei instance segmentation. In: MICCAI 2022, Part II. pp. 140–149. Springer (2022)

    Google Scholar 

  15. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, June 28 - July 1, 2009. pp. 1107–1110. IEEE (2009). https://doi.org/10.1109/ISBI.2009.5193250, https://drive.google.com/file/d/1eZGi1wUdyxVOYADXUbxZiVtajlztSnGL

  16. Meng, C., Rombach, R., Gao, R., Kingma, D.P., Ermon, S., Ho, J., Salimans, T.: On distillation of guided diffusion models (2023)

    Google Scholar 

  17. Moghadam, P.A., Dalen, S.V., Martin, K.C., Lennerz, J., Yip, S., Farahani, H., Bashashati, A.: A morphology focused diffusion probabilistic model for synthesis of histopathology images. In: 2023 IEEE conference on computer vision and pattern recognition (2023)

    Google Scholar 

  18. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, Alec, e.a.: Zero-Shot Text-to-Image Generation (February 2021), arXiv:2102.12092

  19. Reynaud, H., Qiao, M., Dombrowski, M., Day, T., Razavi, R., Gomez, A., Leeson, P., Kainz, B.: Feature-conditioned cascaded video diffusion models for precise echocardiogram synthesis. In: Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Taylor, R. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. pp. 142–152. Springer Nature Switzerland, Cham (2023)

    Chapter  Google Scholar 

  20. RL, G., AP, H., V, F., HE, V., DR, L., WA, K., LM., S.: Toward a shared vision for cancer genomic data. N Engl J Med. (2016). https://doi.org/10.1056/NEJMp1607591

  21. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-Resolution Image Synthesis with Latent Diffusion Models (April 2022), arXiv:2112.10752

  22. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet, D.J., Norouzi, M.: Photorealistic text-to-image diffusion models with deep language understanding (2022). https://doi.org/10.48550/ARXIV.2205.11487, https://arxiv.org/abs/2205.11487

  23. Shrivastava, A., Fletcher, P.T.: Nasdm: Nuclei-aware semantic histopathology image generation using diffusion models. In: Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Taylor, R. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. pp. 786–796. Springer Nature Switzerland, Cham (2023)

    Chapter  Google Scholar 

  24. stanford Song, Y.S., Sohl-Dickstein, J., Brain, G., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. ICLR (2021)

    Google Scholar 

  25. Wagner, N., Fuchs, M., Tolkach, Y., Mukhopadhyay, A.: Federated stain normalization for computational pathology. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. pp. 14–23. Springer Nature Switzerland, Cham (2022)

    Chapter  Google Scholar 

  26. Wang, J., Perez, L., et al.: The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Networks Vis. Recognit 11(2017),  1–8 (2017)

    Google Scholar 

  27. Wang, P.: lucidrains/imagen-pytorch: Implementation of Imagen, Google’s Text-to-Image Neural Network, in Pytorch — github.com. https://github.com/lucidrains/imagen-pytorch (2022), [Accessed 12-Nov-2022]

  28. Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M.: The cancer genome atlas pan-cancer analysis project. Nature Publishing Group (2013). https://doi.org/10.1038/ng.2764, http://www.cancergenome.nih.gov/.

  29. Wu, B., Moeckel, G.: Application of digital pathology and machine learning in the liver, kidney and lung diseases. Journal of Pathology Informatics 14, 100184 (2023). https://doi.org/10.1016/j.jpi.2022.100184

Download references

Acknowledgments

S. Cechnicka is supported by the UKRI Centre for Doctoral Training AI4Health (EP/S023283/1). Support was also received from the ERC project MIA-NORMAL 101083647, the State of Bavaria (HTA) and DFG 512819079. HPC resources were provided by NHR@FAU of FAU Erlangen-Nürnberg under the NHR project b180dc. NHR@FAU hardware is partially funded by the DFG - 440719683. Dr. Roufosse is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial College London (ICL). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Dr Roufosse’s research activity is made possible with generous support from Sidharth and Indira Burman. Human samples used in this research project were obtained from the Imperial College Healthcare Tissue & Biobank (ICHTB). ICHTB is supported by NIHR Biomedical Research Centre based at Imperial College Healthcare NHS Trust and ICL. ICHTB is approved by Wales REC3 to release human material for research (22/WA/2836)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Cechnicka .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 62162 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cechnicka, S. et al. (2024). URCDM: Ultra-Resolution Image Synthesis in Histopathology. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy