Skip to main content

Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-observations for High-Quality Sparse-View Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Novel view synthesis via Neural Radiance Fields (NeRFs) or 3D Gaussian Splatting (3DGS) typically necessitates dense observations with hundreds of input images to circumvent artifacts. We introduce Deceptive-NeRF/3DGS (In harmonic progression, a Deceptive Cadence may disrupt expectations of chord progression but enriches the emotional expression of the music. Our Deceptive-X, where “X” can be NeRF, 3DGS, or a pertinent 3D reconstruction framework-counters overfitting to sparse input views by densely synthesizing consistent pseudo-observations, enriching the original sparse inputs by fivefold to tenfold.) to enhance sparse-view reconstruction with only a limited set of input images, by leveraging a diffusion model pre-trained from multiview datasets. Different from using diffusion priors to regularize representation optimization, our method directly uses diffusion-generated images to train NeRF/3DGS as if they were real input views. Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality photorealistic pseudo-observations. To resolve consistency among pseudo-observations and real input views, we develop an uncertainty measure to guide the diffusion model’s generation. Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times. Extensive experiments across diverse and challenging datasets validate that our approach outperforms existing state-of-the-art methods and is capable of synthesizing novel views with super-resolution in the few-view setting. Project page: https://xinhangliu.com/deceptive-nerf-3dgs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that 3D content generation from images differs fundamentally from few-view reconstruction, due to the need to satisfy the multi-view geometry constraint. This work tackles the latter, where the goal is “reconstruction” rather than “generation”.

References

  1. Attal, B., et al.: HyperReel: high-fidelity 6-DoF video with ray-conditioned sampling. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5855–5864 (2021)

    Google Scholar 

  3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5470–5479 (2022)

    Google Scholar 

  4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  5. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  6. Cao, A., Johnson, J.: HexPlane: a fast representation for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 130–141 (2023)

    Google Scholar 

  7. Chan, E.R., et al.: GeNVS: generative novel view synthesis with 3D-aware diffusion models. In: arXiv (2023)

    Google Scholar 

  8. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision (ECCV), vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

  9. Chen, A., et al.: MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14124–14133 (2021)

    Google Scholar 

  10. Chen, H., et al.: Single-stage diffusion NeRF: a unified approach to 3D generation and reconstruction. arXiv preprint arXiv:2304.06714 (2023)

  11. Chen, Y., Xu, H., Wu, Q., Zheng, C., Cham, T.J., Cai, J.: Explicit correspondence matching for generalizable neural radiance fields. arXiv preprint arXiv:2304.12294 (2023)

  12. Chibane, J., Bansal, A., Lazova, V., Pons-Moll, G.: Stereo Radiance Fields (SRF): learning view synthesis from sparse views of novel scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021

    Google Scholar 

  13. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5828–5839 (2017)

    Google Scholar 

  14. Deng, C., et al.: NeRDi: single-view NeRF synthesis with language-guided diffusion as general image priors. arXiv preprint arXiv:2212.03267 (2022)

  15. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: fewer views and faster training for free. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12882–12891 (2022)

    Google Scholar 

  16. Du, Y., Smith, C., Tewari, A., Sitzmann, V.: Learning to render novel views from wide-baseline stereo pairs. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  17. Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12479–12488 (2023)

    Google Scholar 

  18. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5501–5510 (2022)

    Google Scholar 

  19. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5501–5510 (2022)

    Google Scholar 

  20. Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)

  21. Goli, L., Reading, C., Selllán, S., Jacobson, A., Tagliasacchi, A.: Bayes’ rays: uncertainty quantification for neural radiance fields. arXiv preprint arXiv:2309.03185 (2023)

  22. Gu, J., et al.: NerfDiff: single-image view synthesis with NeRF-guided distillation from 3D-aware diffusion. In: International Conference on Machine Learning (ICML) (2023)

    Google Scholar 

  23. Wang, G., Chen, Z., Loy, C.C., Liu, Z.: SparseNeRF: distilling depth ranking for few-shot novel view synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  24. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  25. Jain, A., Tancik, M., Abbeel, P.: Putting NeRF on a diet: semantically consistent few-shot view synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5885–5894 (2021)

    Google Scholar 

  26. Jang, W., Agapito, L.: CodeNeRF: disentangled neural radiance fields for object categories. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12949–12958 (2021)

    Google Scholar 

  27. Johari, M.M., Lepoittevin, Y., Fleuret, F.: GeoNeRF: generalizing NeRF with geometry priors. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18365–18375 (2022)

    Google Scholar 

  28. Karnewar, A., Vedaldi, A., Novotny, D., Mitra, N.: HoloDiffusion: training a 3D diffusion model using 2D images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)

    Google Scholar 

  29. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (TOG) 42(4), 139-1 (2023)

    Google Scholar 

  30. Kim, M., Seo, S., Han, B.: InfoNeRF: ray entropy minimization for few-shot neural volume rendering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  31. Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing NeRF for editing via feature field distillation. In: Advances in Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  32. Kwak, M.S., Song, J., Kim, S.: GeCoNeRF: few-shot neural radiance fields via geometric consistency. In: International Conference on Machine Learning (ICML) (2023)

    Google Scholar 

  33. Lin, C.H., et al.: Magic3D: high-resolution text-to-3D content creation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  34. Liu, R., Wu, R., Hoorick, B.V., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-1-to-3: zero-shot one image to 3D object. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  35. Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance fields. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  36. Liu, X., Chen, J., Yu, H., Tai, Y.W., Tang, C.K.: Unsupervised multi-view object segmentation using radiance field propagation. Adv. Neural Inf. Process. Syst. (NeurIPS) 35, 17730–17743 (2022)

    Google Scholar 

  37. Liu, X., Tai, Y.W., Tang, C.K., Miraldo, P., Lohit, S., Chatterjee, M.: Gear-NeRF: free-viewpoint rendering and tracking with motion-aware spatio-temporal sampling. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19667–19679 (2024)

    Google Scholar 

  38. Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: RealFusion: 360\(^\circ \) reconstruction of any object from a single image. arXiv preprint arXiv:2302.10663 (2023)

  39. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  40. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  41. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (TOG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  42. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: RegNeRF: regularizing neural radiance fields for view synthesis from sparse inputs. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5480–5490 (2022)

    Google Scholar 

  43. Park, K., et al.: Nerfies: deformable neural radiance fields. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  44. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: text-to-3D using 2D diffusion. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  45. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10318–10327 (2021)

    Google Scholar 

  46. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common objects in 3D: large-scale learning and evaluation of real-life 3D category reconstruction. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10901–10911 (2021)

    Google Scholar 

  47. Roberts, M., et al.: Hypersim: a photorealistic synthetic dataset for holistic indoor scene understanding. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10912–10922 (2021)

    Google Scholar 

  48. Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Nießner, M.: Dense depth priors for neural radiance fields from sparse input views. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022

    Google Scholar 

  49. Roessle, B., Müller, N., Porzi, L., Bulò, S.R., Kontschieder, P., Nießner, M.: GaNeRF: leveraging discriminators to optimize neural radiance fields. ACM Trans. Graph. (TOG) (2023)

    Google Scholar 

  50. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022

    Google Scholar 

  51. Seo, S., Chang, Y., Kwak, N.: FlipNeRF: flipped reflection rays for few-shot novel view synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  52. Seo, S., Han, D., Chang, Y., Kwak, N.: MixNeRF: modeling a ray with mixture density for novel view synthesis from sparse inputs. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20659–20668, June 2023

    Google Scholar 

  53. Shen, J., Agudo, A., Moreno-Noguer, F., Ruiz, A.: Conditional-flow NeRF: accurate 3D modelling with reliable uncertainty quantification. In: In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision (ECCV), pp. 540–557. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_31

  54. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning (ICML), pp. 2256–2265 (2015)

    Google Scholar 

  55. Somraj, N., Karanayil, A., Soundararajan, R.: SimpleNeRF: regularizing sparse input neural radiance fields with simpler solutions. In: ACM Transactions on Graphics (SIGGRAPH ASIA), pp. 1–11 (2023)

    Google Scholar 

  56. Somraj, N., Soundararajan, R.: ViP-NeRF: visibility prior for sparse input neural radiance fields. In: ACM Transactions on Graphics (SIGGRAPH), August 2023

    Google Scholar 

  57. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  58. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5459–5469 (2022)

    Google Scholar 

  59. Sünderhauf, N., Abou-Chakra, J., Miller, D.: Density-aware NeRF ensembles: quantifying predictive uncertainty in neural radiance fields. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 9370–9376. IEEE (2023)

    Google Scholar 

  60. Tewari, A., et al.: Advances in neural rendering. In: Computer Graphics Forum, pp. 703–735. Wiley Online Library (2022)

    Google Scholar 

  61. Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12959–12970 (2021)

    Google Scholar 

  62. Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: SPARF: neural radiance fields from sparse and noisy poses. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  63. Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: text-and-image driven manipulation of neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3835–3844 (2022)

    Google Scholar 

  64. Wang, C., Wu, X., Guo, Y.C., Zhang, S.H., Tai, Y.W., Hu, S.M.: NeRF-SR: high quality neural radiance fields using supersampling. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6445–6454 (2022)

    Google Scholar 

  65. Wang, H., Du, X., Li, J., Yeh, R.A., Shakhnarovich, G.: Score Jacobian chaining: lifting pretrained 2D diffusion models for 3D generation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12619–12629 (2023)

    Google Scholar 

  66. Wang, L., et al.: Fourier PlenOctrees for dynamic radiance field rendering in real-time. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13524–13534 (2022)

    Google Scholar 

  67. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. (TIP) 13(4), 600–612 (2004)

    Article  Google Scholar 

  68. Wu, R., et al.: ReconFusion: 3D reconstruction with diffusion priors. arXiv (2023)

    Google Scholar 

  69. Wynn, J., Turmukhambetov, D.: DiffusioNeRF: regularizing neural radiance fields with denoising diffusion models. arXiv (2023)

    Google Scholar 

  70. Xu, D., Jiang, Y., Wang, P., Fan, Z., Wang, Y., Wang, Z.: NeuralLift-360: lifting an in-the-wild 2D photo to a 3D object with 360\(^\circ \) views. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  71. Yang, J., Pavone, M., Wang, Y.: FreeNeRF: improving few-shot neural rendering with free frequency regularization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  72. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5752–5761 (2021)

    Google Scholar 

  73. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: PixelNeRF: neural radiance fields from one or few images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  74. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5728–5739 (2022)

    Google Scholar 

  75. Zhang, J., et al.: Editable free-viewpoint video using a layered neural representation. ACM Trans. Graph. (TOG) 40(4), 1–18 (2021)

    MathSciNet  Google Scholar 

  76. Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: arXiv preprint arXiv:2302.05543 (2023)

  77. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–595 (2018)

    Google Scholar 

  78. Zhou, Z., Tulsiani, S.: SparseFusion: distilling view-conditioned diffusion for 3D reconstruction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Dartmouth A&S Startup fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhang Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13487 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Chen, J., Kao, SH., Tai, YW., Tang, CK. (2025). Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-observations for High-Quality Sparse-View Reconstruction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72640-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72639-2

  • Online ISBN: 978-3-031-72640-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy