Skip to main content

Fully Sparse 3D Occupancy Prediction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Occupancy prediction plays a pivotal role in autonomous driving. Previous methods typically construct dense 3D volumes, neglecting the inherent sparsity of the scene and suffering high computational costs. To bridge the gap, we introduce a novel fully sparse occupancy network, termed SparseOcc. SparseOcc initially reconstructs a sparse 3D representation from visual inputs and subsequently predicts semantic/instance occupancy from the 3D sparse representation by sparse queries. A mask-guided sparse sampling is designed to enable sparse queries to interact with 2D features in a fully sparse manner, thereby circumventing costly dense features or global attention. Additionally, we design a thoughtful ray-based evaluation metric, namely RayIoU, to solve the inconsistency penalty along depths raised in traditional voxel-level mIoU criteria. SparseOcc demonstrates its effectiveness by achieving a RayIoU of 34.0, while maintaining a real-time inference speed of 17.3 FPS, with 7 history frames inputs. By incorporating more preceding frames to 15, SparseOcc continuously improves its performance to 35.1 RayIoU without bells and whistles. Code is available at https://github.com/MCG-NJU/SparseOcc.

H. Liu and Y. Chen—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tesla AI Day (2021). https://www.youtube.com/watch?v=j0z4FweCy4M

  2. Bozic, A., Palafox, P., Thies, J., Dai, A., Nießner, M.: Transformerfusion: monocular rgb scene reconstruction using transformers. In: NeurIPS (2021)

    Google Scholar 

  3. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  4. Cao, A.Q., de Charette, R.: Monoscene: monocular 3d semantic scene completion. In: CVPR (2022)

    Google Scholar 

  5. Chen, L., et al.: Persformer: 3d lane detection via perspective transformer and the openlane benchmark. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, pp. 550–567. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19839-7_32

    Chapter  Google Scholar 

  6. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR (2022)

    Google Scholar 

  7. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: NeurIPS (2021)

    Google Scholar 

  8. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  9. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH (1996)

    Google Scholar 

  10. Ding, Y., Huang, L., Zhong, J.: Multi-scale occ: 4th place solution for Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 3d Occupancy Prediction Challenge. arXiv preprint arXiv:2306.11414 (2023)

  11. Feng, Z., Yang, L., Guo, P., Li, B.: Cvrecon: rethinking 3d geometric feature learning for neural reconstruction. In: ICCV (2023)

    Google Scholar 

  12. Gan, W., Mo, N., Xu, H., Yokoya, N.: A comprehensive framework for 3d occupancy estimation in autonomous driving. IEEE Trans. Intell. Veh. 1–19 (2024)

    Google Scholar 

  13. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR (2022)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Huang, J., Huang, G.: Bevdet4d: exploit temporal cues in multi-camera 3d object detection. arXiv preprint arXiv:2203.17054 (2022)

  16. Huang, J., Huang, G., Zhu, Z., Du, D.: Bevdet: high-performance multi-camera 3d object detection in bird-eye-view. arXiv preprint arXiv:2112.11790 (2021)

  17. Huang, L., et al.: Leveraging vision-centric multi-modal expertise for 3d object detection. In: NeurIPS (2024)

    Google Scholar 

  18. Huang, L., et al.: Geometric-aware pretraining for vision-centric 3d object detection. arXiv preprint arXiv:2304.03105 (2023)

  19. Huang, Y., Zheng, W., Zhang, Y., Zhou, J., Lu, J.: Tri-perspective view for vision-based 3d semantic occupancy prediction. In: CVPR (2023)

    Google Scholar 

  20. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: NeurIPS (2016)

    Google Scholar 

  21. Khurana, T., Hu, P., Held, D., Ramanan, D.: Point cloud forecasting as a proxy for 4d occupancy forecasting. In: CVPR (2023)

    Google Scholar 

  22. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  23. Li, H., et al.: Open-sourced data ecosystem in autonomous driving: the present and future. arXiv preprint arXiv:2312.03408 (2023)

  24. Li, H., et al.: Delving into the devils of bird’s-eye-view perception: a review, evaluation and recipe. IEEE TPAMI (2023)

    Google Scholar 

  25. Li, T., et al.: Lanesegnet: map learning with lane segment perception for autonomous driving. In: ICLR (2024)

    Google Scholar 

  26. Li, Y., et al.: Voxformer: sparse voxel transformer for camera-based 3d semantic scene completion. In: CVPR (2023)

    Google Scholar 

  27. Li, Z., et al.: Bevformer: learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, pp. 1–18. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20077-9_1

    Chapter  Google Scholar 

  28. Li, Z., et al.: Fb-occ: 3d occupancy prediction based on forward-backward view transformation. arXiv preprint arXiv:2307.01492 (2023)

  29. Liao, B., et al.: Maptr: structured modeling and learning for online vectorized hd map construction. In: ICLR (2023)

    Google Scholar 

  30. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  31. Liu, H., Lu, T., Xu, Y., Liu, J., Li, W., Chen, L.: Camliflow: bidirectional camera-lidar fusion for joint optical flow and scene flow estimation. In: CVPR (2022)

    Google Scholar 

  32. Liu, H., Lu, T., Xu, Y., Liu, J., Wang, L.: Learning optical flow and scene flow with bidirectional camera-lidar fusion. arXiv preprint arXiv:2303.12017 (2023)

  33. Liu, H., Teng, Y., Lu, T., Wang, H., Wang, L.: Sparsebev: high-performance sparse 3d object detection from multi-camera videos. In: ICCV (2023)

    Google Scholar 

  34. Liu, Y., Wang, T., Zhang, X., Sun, J.: PETR: position embedding transformation for multi-view 3d object detection. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, pp. 531–548. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19812-0_31

    Chapter  Google Scholar 

  35. Liu, Y., et al.: Petrv2: a unified framework for 3d perception from multi-camera images. arXiv preprint arXiv:2206.01256 (2022)

  36. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

  37. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3d reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  38. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV (2016)

    Google Scholar 

  39. Murez, Z., van As, T., Bartolozzi, J., Sinha, A., Badrinarayanan, V., Rabinovich, A.: Atlas: end-to-end 3D scene reconstruction from posed images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 414–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_25

    Chapter  Google Scholar 

  40. Pan, M., et al.: Renderocc: vision-centric 3d occupancy prediction with 2d rendering supervision. arXiv preprint arXiv:2309.09502 (2023)

  41. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  42. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  43. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  44. Schult, J., Engelmann, F., Hermans, A., Litany, O., Tang, S., Leibe, B.: Mask3d: mask transformer for 3d semantic instance segmentation. In: ICRA (2023)

    Google Scholar 

  45. Sima, C., et al.: Scene as occupancy. In: ICCV (2023)

    Google Scholar 

  46. Stier, N., Rich, A., Sen, P., Höllerer, T.: Vortx: volumetric 3d reconstruction with transformers for voxelwise view selection and fusion. In: 3DV (2021)

    Google Scholar 

  47. Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: Neuralrecon: real-time coherent 3d reconstruction from monocular video. In: CVPR (2021)

    Google Scholar 

  48. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)

    Google Scholar 

  49. Takmaz, A., Fedele, E., Sumner, R.W., Pollefeys, M., Tombari, F., Engelmann, F.: Openmask3d: open-vocabulary 3d instance segmentation. arXiv preprint arXiv:2306.13631 (2023)

  50. Tian, X., Jiang, T., Yun, L., Wang, Y., Wang, Y., Zhao, H.: Occ3d: a large-scale 3d occupancy prediction benchmark for autonomous driving. In: NeurIPS Datasets and Benchmarks (2023)

    Google Scholar 

  51. Tolstikhin, I.O., et al.: Mlp-mixer: an all-mlp architecture for vision. In: NeurIPS (2021)

    Google Scholar 

  52. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  53. Wang, H., et al.: Openlane-v2: a topology reasoning benchmark for unified 3d hd mapping. In: NeurIPS (2023)

    Google Scholar 

  54. Wang, S., Liu, Y., Wang, T., Li, Y., Zhang, X.: Exploring object-centric temporal modeling for efficient multi-view 3d object detection. arXiv preprint arXiv:2303.11926 (2023)

  55. Wang, X., et al.: Openoccupancy: a large scale benchmark for surrounding semantic occupancy perception. arXiv preprint arXiv:2303.03991 (2023)

  56. Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: Detr3d: 3d object detection from multi-view images via 3d-to-2d queries. In: CoRL (2022)

    Google Scholar 

  57. Wang, Y., Chen, Y., Liao, X., Fan, L., Zhang, Z.: Panoocc: unified occupancy representation for camera-based 3d panoptic segmentation. arXiv preprint arXiv:2306.10013 (2023)

  58. Wei, Y., Zhao, L., Zheng, W., Zhu, Z., Zhou, J., Lu, J.: Surroundocc: multi-camera 3d occupancy prediction for autonomous driving. In: ICCV (2023)

    Google Scholar 

  59. Yang, Z., Chen, L., Sun, Y., Li, H.: Visual point cloud forecasting enables scalable autonomous driving. In: CVPR (2024)

    Google Scholar 

  60. Yang, Z., Jiang, L., Sun, Y., Schiele, B., Jia, J.: A unified query-based paradigm for point cloud understanding. In: ICCV (2022)

    Google Scholar 

  61. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3dssd: point-based 3d single stage object detector. In: CVPR (2020)

    Google Scholar 

  62. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: Std: sparse-to-dense 3d object detector for point cloud. In: ICCV (2019)

    Google Scholar 

  63. Yang, Z., Zhou, Y., Chen, Z., Ngiam, J.: 3d-man: 3d multi-frame attention network for object detection. In: ICCV (2021)

    Google Scholar 

  64. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and tracking. In: CVPR (2021)

    Google Scholar 

  65. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

We thank the anonymous reviewers for their suggestions that make this work better. This work is supported by the National Key R&D Program of China (No. 2022ZD0160900), the National Natural Science Foundation of China (No. 62076119, No. 61921006), the Fundamental Research Funds for the Central Universities (No. 020214380119), and the Collaborative Innovation Center of Novel Software Technology and Industrialization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2531 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H. et al. (2025). Fully Sparse 3D Occupancy Prediction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15083. Springer, Cham. https://doi.org/10.1007/978-3-031-72698-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72698-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72697-2

  • Online ISBN: 978-3-031-72698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy