Skip to main content

Neural Graphics Texture Compression Supporting Random Access

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Advances in rendering have led to tremendous growth in texture assets, including resolution, complexity, and novel textures components, but this growth in data volume has not been matched by advances in its compression. Meanwhile Neural Image Compression (NIC) has advanced significantly and shown promising results, but the proposed methods cannot be directly adapted to neural texture compression. First, texture compression requires on-demand and real-time decoding with random access during parallel rendering (e.g. block texture decompression on GPUs). Additionally, NIC does not support multi-resolution reconstruction (mip-levels), nor does it have the ability to efficiently jointly compress different sets of texture channels. In this work, we introduce a novel approach to texture set compression that integrates traditional GPU texture representation and NIC techniques, designed to enable random access and support many-channel texture sets. To achieve this goal, we propose an asymmetric auto-encoder framework that employs a convolutional encoder to capture detailed information in a bottleneck-latent space, and at decoder side we utilize a fully connected network, whose inputs are sampled latent features plus positional in texture coordinate and mip level. This latent data is defined to enable simplified access to multi-resolution data by simply changing the scanning strides. Experimental results demonstrate that this approach provides much better results than conventional texture compression, and significant improvement over the latest method using neural networks.

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://github.com/ARM-software/astc-encoder.

References

  1. Agustsson, E., Minnen, D., Johnston, N., Balle, J., Hwang, S.J., Toderici, G.: Scale-space flow for end-to-end optimized video compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8503–8512 (2020)

    Google Scholar 

  2. Agustsson, E., Minnen, D., Toderici, G., Mentzer, F.: Multi-realism image compression with a conditional generator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22324–22333 (2023)

    Google Scholar 

  3. Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Gool, L.V.: Generative adversarial networks for extreme learned image compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 221–231 (2019)

    Google Scholar 

  4. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings (2018)

    Google Scholar 

  5. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: International Conference on Learning Representations (2017)

    Google Scholar 

  6. Beers, A.C., Agrawala, M., Chaddha, N.: Rendering from compressed textures. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 373–378. Association for Computing Machinery, New York, NY, USA (1996)

    Google Scholar 

  7. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. Technical report, ITU-T SG 16 Q.6 document VCEG-M33, 13th VCEG meeting, Austin, Texas, USA, April 2001

    Google Scholar 

  8. Delp, E., Mitchell, O.: Image compression using block truncation coding. IEEE Trans. Commun. 27(9), 1335–1342 (1979)

    Article  Google Scholar 

  9. Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: Coin: compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021)

  10. Fenney, S.: Texture compression using low-frequency signal modulation. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS 2003, pp. 84–91. Eurographics Association, Goslar, DEU (2003)

    Google Scholar 

  11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  12. Ghouse, N.F., Petersen, J., Wiggers, A., Xu, T., Sautière, G.: A residual diffusion model for high perceptual quality codec augmentation. arXiv preprint arXiv:2301.05489 (2023)

  13. Habibian, A., Rozendaal, T.V., Tomczak, J.M., Cohen, T.S.: Video compression with rate-distortion autoencoders. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7033–7042 (2019)

    Google Scholar 

  14. He, D., Yang, Z., Peng, W., Ma, R., Qin, H., Wang, Y.: ELIC: efficient learned image compression with unevenly grouped space-channel contextual adaptive coding. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022

    Google Scholar 

  15. Hill, S., et al.: Physically based shading in theory and practice. In: Proceedings of the ACM SIGGRAPH, SIGGRAPH 2020. Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  16. Hou, Q., Farhadzadeh, F., Said, A., Sautiere, G., Le, H.: Low-latency neural stereo streaming. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7974–7984, June 2024

    Google Scholar 

  17. Hu, Z., Lu, G., Guo, J., Liu, S., Jiang, W., Xu, D.: Coarse-to-fine deep video coding with hyperprior-guided mode prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5921–5930 (2022)

    Google Scholar 

  18. Hu, Z., Lu, G., Xu, D.: FVC: a new framework towards deep video compression in feature space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1502–1511 (2021)

    Google Scholar 

  19. Hughes, J.F., et al.: Computer Graphics: Principles and Practice, 3rd edn. Addison-Wesley (2013)

    Google Scholar 

  20. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  21. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Proceedings 3rd International Conference on Learning Representations, pp. 1–15 (2014)

    Google Scholar 

  22. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 3519–3529. PMLR (2019)

    Google Scholar 

  23. Le, H., Pourreza, R., Said, A., Sautiere, G., Wiggers, A.: GameCodec: neural cloud gaming video codec. In: BMVC, p. 204 (2022)

    Google Scholar 

  24. Le, H., et al.: MobileCodec: neural inter-frame video compression on mobile devices. In: Proceedings of the 13th ACM Multimedia Systems Conference, pp. 324–330 (2022)

    Google Scholar 

  25. Li, J., Li, B., Lu, Y.: Deep contextual video compression. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  26. Li, J., Li, B., Lu, Y.: Hybrid spatial-temporal entropy modelling for neural video compression. In: Proceedings of the 30th ACM International Conference on Multimedia (2022)

    Google Scholar 

  27. Li, J., Li, B., Lu, Y.: Neural video compression with diverse contexts. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, Canada, 18–22 June 2023 (2023)

    Google Scholar 

  28. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: DVC: an end-to-end deep video compression framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11006–11015 (2019)

    Google Scholar 

  29. Mentzer, F., Toderici, G., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. In: Advances in Neural Information Processing Systems, vol. 33, pp. 11913–11924 (2020)

    Google Scholar 

  30. Minnen, D., Ballé, J., Toderici, G.D.: Joint autoregressive and hierarchical priors for learned image compression. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  31. Muckley, M.J., El-Nouby, A., Ullrich, K., Jégou, H., Verbeek, J.: Improving statistical fidelity for neural image compression with implicit local likelihood models. arXiv preprint arXiv:2301.11189 (2023)

  32. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (2022)

    Google Scholar 

  33. Nystad, J., Lassen, A., Pomianowski, A., Ellis, S., Olson, T.: Adaptive scalable texture compression. In: Proceedings of the Fourth ACM SIGGRAPH/Eurographics Conference on High-Performance Graphics, EGGH-HPG 2012, pp. 105–114. Eurographics Association, Goslar, DEU (2012)

    Google Scholar 

  34. Park, J.J., Florence, P.R., Straub, J., Newcombe, R.A., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 165–174, January 2019

    Google Scholar 

  35. Rippel, O., Anderson, A.G., Tatwawadi, K., Nair, S., Lytle, C., Bourdev, L.: ELF-VC: efficient learned flexible-rate video coding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14479–14488 (2021)

    Google Scholar 

  36. Rippel, O., Nair, S., Lew, C., Branson, S., Anderson, A.G., Bourdev, L.: Learned video compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  37. van Rozendaal, T., et al.: MobileNVC: real-time 1080p neural video compression on a mobile device. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4323–4333 (2024)

    Google Scholar 

  38. Sheng, X., Li, J., Li, B., Li, L., Liu, D., Lu, Y.: Temporal context mining for learned video compression. IEEE Trans. Multimedia (2022)

    Google Scholar 

  39. Shirley, P., Ashikhmin, M., Marschner, S.: Fundamentals of Computer Graphics. AK Peters/CRC Press (2009)

    Google Scholar 

  40. Ström, J., Akenine-Möller, T.: iPACKMAN: high-quality, low-complexity texture compression for mobile phones. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS 2005, pp. 63–70 (2005)

    Google Scholar 

  41. Strümpler, Y., Postels, J., Yang, R., Van Gool, L., Tombari, F.: Implicit neural representations for image compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 74–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_5

    Chapter  Google Scholar 

  42. Takikawa, T., et al.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–9. No. Article 41 in SIGGRAPH 2022. Association for Computing Machinery, New York, NY, USA, July 2022

    Google Scholar 

  43. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

    Google Scholar 

  44. Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314 (2017)

    Google Scholar 

  45. Vaidyanathan, K., Salvi, M., Wronski, B., Akenine-Möller, T., Ebelin, P., Lefohn, A.: Random-access neural compression of material textures. In: Proceedings of SIGGRAPH (2023)

    Google Scholar 

  46. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  47. Wikipedia. 2024: S3 texture compression (2024). Accessed 25 Apr 2024. https://en.wikipedia.org/wiki/S3_Texture_Compression

  48. Wronski, B.: Neural material (de)compression - data-driven nonlinear dimensionality reduction. 1https://bartwronski.com/2021/05/30/neural-material-decompression-data-driven-nonlinear-dimensionality-reduction/

  49. Zhu, Y., Yang, Y., Cohen, T.: Transformer-based transform coding. In: ICLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Farhadzadeh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12334 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farhadzadeh, F. et al. (2025). Neural Graphics Texture Compression Supporting Random Access. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15095. Springer, Cham. https://doi.org/10.1007/978-3-031-72913-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72913-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72912-6

  • Online ISBN: 978-3-031-72913-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy