Skip to main content

GlobalPointer: Large-Scale Plane Adjustment with Bi-Convex Relaxation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Plane adjustment (PA) is crucial for many 3D applications, involving simultaneous pose estimation and plane recovery. Despite recent advancements, it remains a challenging problem in the realm of multi-view point cloud registration. Current state-of-the-art methods can achieve globally optimal convergence only with good initialization. Furthermore, their high time complexity renders them impractical for large-scale problems. To address these challenges, we first exploit a novel optimization strategy termed Bi-Convex Relaxation, which decouples the original problem into two simpler sub-problems, reformulates each sub-problem using a convex relaxation technique, and alternately solves each one until the original problem converges. Building on this strategy, we propose two algorithmic variants for solving the plane adjustment problem, namely GlobalPointer and GlobalPointer++, based on point-to-plane and plane-to-plane errors, respectively. Extensive experiments on both synthetic and real datasets demonstrate that our method can perform large-scale plane adjustment with linear time complexity, larger convergence region, and robustness to poor initialization, while achieving similar accuracy as prior methods. The code is available at github.com/wu-cvgl/GlobalPointer.

B. Lioa and Z. Zhao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136(2), 233–251 (2012). https://doi.org/10.1007/s10107-012-0602-3

    Article  MathSciNet  Google Scholar 

  2. ApS, M.: Mosek optimization toolbox for matlab. User’s Guide Ref. Manual, Version 4(1) (2019)

    Google Scholar 

  3. Briales, J., Gonzalez-Jimenez, J.: Convex global 3d registration with lagrangian duality. In: CVPR, pp. 4960–4969 (2017). https://doi.org/10.1109/CVPR.2017.595

  4. Chen, Y., Zhao, J., Kneip, L.: Hybrid rotation averaging: a fast and robust rotation averaging approach. In: CVPR, pp. 10353–10362 (2021). https://doi.org/10.1109/CVPR46437.2021.01022

  5. Dellaert, F., Rosen, D.M., Wu, J., Mahony, R., Carlone, L.: Shonan rotation averaging: global optimality by surfing \(so(p)^n\). In: ECCV, pp. 292–308 (2020). https://doi.org/10.1007/978-3-030-58539-6_18

  6. Eriksson, A., Olsson, C., Kahl, F., Chin, T.J.: Rotation averaging and strong duality. In: CVPR, pp. 127–135 (2018). https://doi.org/10.1109/CVPR.2018.00021

  7. Ferrer, G.: Eigen-factors: plane estimation for multi-frame and time-continuous point cloud alignment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1278–1284 (2019). https://doi.org/10.1109/IROS40897.2019.8967573

  8. Ferrer, G., Iarosh, D., Kornilova, A.: Eigen-factors an alternating optimization for back-end plane slam of 3d point clouds. arXiv preprint arXiv:2304.01055 (2023). https://doi.org/10.21203/rs.3.rs-4601229/v1

  9. Härenstam-Nielsen, L., Zeller, N., Cremers, D.: Semidefinite relaxations for robust multiview triangulation. In: CVPR, pp. 749–757 (2023). https://doi.org/10.1109/CVPR52729.2023.00079

  10. Helmberger, M., Morin, K., Berner, B., Kumar, N., Cioffi, G., Scaramuzza, D.: The hilti slam challenge dataset. IEEE Rob. Autom. Lett. 7(3), 7518–7525 (2022). https://doi.org/10.1109/LRA.2022.3183759

    Article  Google Scholar 

  11. Hsiao, M., Westman, E., Zhang, G., Kaess, M.: Keyframe-based dense planar slam. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5110–5117 (2017). https://doi.org/10.1109/ICRA.2017.7989597

  12. Kaess, M.: Simultaneous localization and mapping with infinite planes. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4605–4611 (2015). https://doi.org/10.1109/ICRA.2015.7139837

  13. Liu, Z., Liu, X., Zhang, F.: Efficient and consistent bundle adjustment on lidar point clouds. IEEE Trans. Rob. 39(6), 4366–4386 (2023). https://doi.org/10.1109/TRO.2023.3311671

    Article  Google Scholar 

  14. Liu, Z., Zhang, F.: Balm: bundle adjustment for lidar mapping. IEEE Rob. Autom. Lett. 6(2), 3184–3191 (2021). https://doi.org/10.1109/LRA.2021.3062815

    Article  Google Scholar 

  15. Parra, A., Chng, S.F., Chin, T.J., Eriksson, A., Reid, I.: Rotation coordinate descent for fast globally optimal rotation averaging. In: CVPR, pp. 4296–4305 (2021). https://doi.org/10.1109/CVPR46437.2021.00428

  16. Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.: Se-sync: a certifiably correct algorithm for synchronization over the special euclidean group. Int. J. Rob. Res. 38(2–3), 95–125 (2019). https://doi.org/10.1177/0278364918784361

    Article  Google Scholar 

  17. Segal, A., Haehnel, D., Thrun, S.: Generalized-icp. In: Robotics: Science and Systems, p. 435 (2009). https://doi.org/10.15607/RSS.2009.V.021

  18. Shan, T., Englot, B.: Lego-loam: lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4758–4765 (2018). https://doi.org/10.1109/IROS.2018.8594299

  19. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  20. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imag. Sci. 1(3), 248–272 (2008). https://doi.org/10.1137/080724265

    Article  MathSciNet  Google Scholar 

  21. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Springer, Heidelberg (2000). https://doi.org/10.1007/978-1-4615-4381-7

  22. Yang, H., Shi, J., Carlone, L.: Teaser: fast and certifiable point cloud registration. IEEE Trans. Rob. 37(2), 314–333 (2020). https://doi.org/10.1109/TRO.2020.3033695

    Article  Google Scholar 

  23. Zhang, G., Larsson, V., Barath, D.: Revisiting rotation averaging: uncertainties and robust losses. In: CVPR, pp. 17215–17224 (2023). https://doi.org/10.1109/CVPR52729.2023.01651

  24. Zhang, J., Singh, S.: Loam: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, pp. 1–9 (2014). https://doi.org/10.15607/RSS.2014.X.007

  25. Zhao, J.: An efficient solution to non-minimal case essential matrix estimation. IEEE TPAMI 44(4), 1777–1792 (2020). https://doi.org/10.1109/TPAMI.2020.3030161

    Article  Google Scholar 

  26. Zhou, L.: Efficient second-order plane adjustment. In: CVPR, pp. 13113–13121 (2023). https://doi.org/10.1109/CVPR52729.2023.01260

  27. Zhou, L., Koppel, D., Ju, H., Steinbruecker, F., Kaess, M.: An efficient planar bundle adjustment algorithm. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 136–145 (2020). https://doi.org/10.1109/ISMAR50242.2020.00035

  28. Zhou, L., Wang, S., Kaess, M.: \(\pi \)-lsam: lidar smoothing and mapping with planes. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5751–5757 (2021). https://doi.org/10.1109/ICRA48506.2021.9561933

  29. Zhou, Q.Y., Park, J., Koltun, V.: Open3d: a modern library for 3d data processing. arXiv preprint arXiv:1801.09847 (2018)

Download references

Acknowledgments

This work was supported in part by NSFC under Grant 62202389, in part by a grant from the Westlake University-Muyuan Joint Research Institute, and in part by the Westlake Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1167 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, B., Zhao, Z., Chen, L., Li, H., Cremers, D., Liu, P. (2025). GlobalPointer: Large-Scale Plane Adjustment with Bi-Convex Relaxation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15117. Springer, Cham. https://doi.org/10.1007/978-3-031-73202-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73202-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73201-0

  • Online ISBN: 978-3-031-73202-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy