Skip to main content

Finding Needles in a Haystack: A Black-Box Approach to Invisible Watermark Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15091))

Included in the following conference series:

  • 299 Accesses

Abstract

In this paper, we propose WaterMark Detector (\(\textsc {WMD}\)), the first invisible watermark detection method under a black-box and annotation-free setting. \(\textsc {WMD}\) is capable of detecting arbitrary watermarks within a given detection dataset using a clean non-watermarked dataset as a reference, without relying on specific decoding methods or prior knowledge of the watermarking techniques. We develop \(\textsc {WMD}\) using foundations of offset learning, where a clean non-watermarked dataset enables us to isolate the influence of only watermarked samples in the reference dataset. Our comprehensive evaluations demonstrate the effectiveness of \(\textsc {WMD}\), which significantly outperforms naive detection methods with AUC scores around only 0.5. In contrast, \(\textsc {WMD}\) consistently achieves impressive detection AUC scores, surpassing 0.9 in most single-watermark datasets and exceeding 0.7 in more challenging multi-watermark scenarios across diverse datasets and watermarking methods. As invisible watermarks become increasingly prevalent, while specific decoding techniques remain undisclosed, our approach provides a versatile solution and establishes a path toward increasing accountability, transparency, and trust in our digital visual content.

Work done during Minzhou Pan’s and Zhenting Wang’s internship at Sony AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stable Diffusion Image Variations. https://huggingface.co/lambdalabs/sd-image-variations-diffusers

  2. (Dec 2023). https://www.europarl.europa.eu/thinktank/de/document/EPRS_BRI(2023)757583

  3. (Oct 2023). https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/

  4. (Aug 2023). https://journal.everypixel.com/ai-image-statistics

  5. Midjourney v5 prompt dataset (2023). https://huggingface.co/datasets/tarungupta83/MidJourney_v5_Prompt_dataset

  6. (Jan 2024). https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240AB1824

  7. (Feb 2024). https://photutorial.com/midjourney-statistics/

  8. Achiam, J., et al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  9. Alemohammad, S., et al.: Self-consuming generative models go mad (2023)

    Google Scholar 

  10. Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)

    Google Scholar 

  11. Bamatraf, A., Ibrahim, R., Salleh, M.N.B.M.: Digital watermarking algorithm using LSB. In: 2010 International Conference on Computer Applications and Industrial Electronics, pp. 155–159 (2010). https://doi.org/10.1109/ICCAIE.2010.5735066

  12. Boland, F., O’Ruanaidh, J., Dautzenberg, C.: Watermarking digital images for copyright protection. In: Fifth International Conference on Image Processing and its Applications, 1995, pp. 326–330 (1995). https://doi.org/10.1049/cp:19950674

  13. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)

    Article  Google Scholar 

  14. Byrnes, O., La, W., Wang, H., Ma, C., Xue, M., Wu, Q.: Data hiding with deep learning: a survey unifying digital watermarking and steganography. arXiv preprint arXiv:2107.09287 (2021)

  15. Carlini, N., et al.: Extracting training data from diffusion models. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 5253–5270 (2023)

    Google Scholar 

  16. Chang, C.C., Tsai, P., Lin, C.C.: SVD-based digital image watermarking scheme. Pattern Recogn. Lett. 26(10), 1577–1586 (2005)

    Article  Google Scholar 

  17. Cheetham, K.D., Joshua: fake trump arrest photos: how to spot an AI-generated image (2023). https://www.bbc.com/news/world-us-canada-65069316

  18. Cheng, D., et al.: Large-scale visible watermark detection and removal with deep convolutional networks. In: Lai, J.-H., Liu, C.-L., Chen, X., Zhou, J., Tan, T., Zheng, N., Zha, H. (eds.) PRCV 2018. LNCS, vol. 11258, pp. 27–40. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03338-5_3

  19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  20. Fernandez, P., Couairon, G., Jégou, H., Douze, M., Furon, T.: The stable signature: Rooting watermarks in latent diffusion models. arXiv preprint arXiv:2303.15435 (2023)

  21. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset (2007)

    Google Scholar 

  22. He, X., Xu, Q., Lyu, L., Wu, F., Wang, C.: Protecting intellectual property of language generation APIS with lexical watermark. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10758–10766 (2022)

    Google Scholar 

  23. He, X., et al.: Cater: intellectual property protection on text generation Apis via conditional watermarks. Adv. Neural. Inf. Process. Syst. 35, 5431–5445 (2022)

    Google Scholar 

  24. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  25. Jiang, Z., Zhang, J., Gong, N.Z.: Evading watermark based detection of AI-generated content. arXiv preprint arXiv:2305.03807 (2023)

  26. Just, H.A., et al.: Lava: data valuation without pre-specified learning algorithms. arXiv preprint arXiv:2305.00054 (2023)

  27. Kheddar, H., Hemis, M., Himeur, Y., Megías, D., Amira, A.: Deep learning for steganalysis of diverse data types: a review of methods, taxonomy, challenges and future directions. Neurocomputing 127528 (2024)

    Google Scholar 

  28. Li, G., Chen, Y., Zhang, J., Li, J., Guo, S., Zhang, T.: Towards the vulnerability of watermarking artificial intelligence generated content. arXiv preprint arXiv:2310.07726 (2023)

  29. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In: International Conference on Machine Learning, pp. 19730–19742. PMLR (2023)

    Google Scholar 

  30. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)

    Google Scholar 

  31. Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-specific triggers. In: IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  32. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV 2014, Part V 13. pp. 740–755. Springer (2014)

    Google Scholar 

  33. Lu, Z., Huang, D., Bai, L., Liu, X., Qu, J., Ouyang, W.: Seeing is not always believing: a quantitative study on human perception of AI-generated images. arXiv preprint arXiv:2304.13023 (2023)

  34. Lukas, N., Diaa, A., Fenaux, L., Kerschbaum, F.: Leveraging optimization for adaptive attacks on image watermarks. arXiv preprint arXiv:2309.16952 (2023)

  35. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  36. Navas, K.A., Ajay, M.C., Lekshmi, M., Archana, T.S., Sasikumar, M.: DWT-DCT-SVD based watermarking. In: 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE 2008), pp. 271–274 (2008). https://doi.org/10.1109/COMSWA.2008.4554423

  37. OpenAI. Watermark in dall\(\cdot \)e 3 (2023). https://help.openai.com/en/articles/8912793-c2pa-in-dall-e-3

  38. O’Ruanaidh, J.J., Pun, T.: Rotation, scale and translation invariant digital image watermarking. In: Proceedings of International Conference on Image Processing, vol. 1, pp. 536–539. IEEE (1997)

    Google Scholar 

  39. Pan, M., Zeng, Y., Lyu, L., Lin, X., Jia, R.: ASSET: robust backdoor data detection across a multiplicity of deep learning paradigms. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 2725–2742. USENIX Association, Anaheim (2023). https://www.usenix.org/conference/usenixsecurity23/presentation/pan

  40. Peng, W., et al.: Are you copying my model? protecting the copyright of large language models for EAAS via backdoor watermark. In: The 61st Annual Meeting of the Association for Computational Linguistics (2023)

    Google Scholar 

  41. Qi, X., Xie, T., Wang, J.T., Wu, T., Mahloujifar, S., Mittal, P.: Towards a proactive \(\{\)ML\(\}\) approach for detecting backdoor poison samples. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 1685–1702 (2023)

    Google Scholar 

  42. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  43. Saberi, M., et al.: Robustness of AI-image detectors: Fundamental limits and practical attacks. arXiv preprint arXiv:2310.00076 (2023)

  44. Sandoval-Segura, P., Singla, V., Geiping, J., Goldblum, M., Goldstein, T., Jacobs, D.: Autoregressive perturbations for data poisoning. Adv. Neural. Inf. Process. Syst. 35, 27374–27386 (2022)

    Google Scholar 

  45. Santoyo-Garcia, H., Fragoso-Navarro, E., Reyes-Reyes, R., Sanchez-Perez, G., Nakano-Miyatake, M., Perez-Meana, H.: An automatic visible watermark detection method using total variation. In: 2017 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1–5. IEEE (2017)

    Google Scholar 

  46. Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)

    Google Scholar 

  47. Shan, S., Cryan, J., Wenger, E., Zheng, H., Hanocka, R., Zhao, B.Y.: Glaze: protecting artists from style mimicry by \(\{\)Text-to-Image\(\}\) models. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 2187–2204 (2023)

    Google Scholar 

  48. Singh, H.K., Singh, A.K.: Comprehensive review of watermarking techniques in deep-learning environments. J. Electron. Imaging 32(03) (2022). https://doi.org/10.1117/1.jei.32.3.031804

  49. Sohn, K., Li, C.L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)

  50. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  51. Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: invisible hyperlinks in physical photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117–2126 (2020)

    Google Scholar 

  52. Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn, M., Ho, A.: Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv preprint arXiv:2211.04325 (2022)

  53. Wang, Z., Chen, C., Lyu, L., Metaxas, D.N., Ma, S.: Diagnosis: detecting unauthorized data usages in text-to-image diffusion models. In: The Twelfth International Conference on Learning Representations (2024)

    Google Scholar 

  54. Wang, Z., Chen, C., Zeng, Y., Lyu, L., Ma, S.: Where did i come from? origin attribution of AI-generated images. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  55. Wang, Z., Sehwag, V., Chen, C., Lyu, L., Metaxas, D.N., Ma, S.: How to trace latent generative model generated images without artificial watermark? arXiv preprint arXiv:2405.13360 (2024)

  56. Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: Diffusiondb: a large-scale prompt gallery dataset for text-to-image generative models. arXiv preprint arXiv:2210.14896 (2022)

  57. Wen, Y., Kirchenbauer, J., Geiping, J., Goldstein, T.: Tree-ring watermarks: fingerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030 (2023)

  58. Woo, S., et al.: Convnext v2: co-designing and scaling convnets with masked autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16133–16142 (2023)

    Google Scholar 

  59. Zavrtanik, V., Kristan, M., Skočaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)

    Article  Google Scholar 

  60. Zeng, Y., Park, W., Mao, Z.M., Jia, R.: Rethinking the backdoor attacks’ triggers: a frequency perspective. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16473–16481 (2021)

    Google Scholar 

  61. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12104–12113 (2022)

    Google Scholar 

  62. Zhang, C., Lin, C., Benz, P., Chen, K., Zhang, W., Kweon, I.S.: A brief survey on deep learning based data hiding. arXiv preprint arXiv:2103.01607 (2021)

  63. Zhao, X., et al.: Invisible image watermarks are provably removable using generative AI (2023)

    Google Scholar 

  64. Zhong, X., Das, A., Alrasheedi, F., Tanvir, A.: Deep learning based image watermarking: a brief survey. arXiv preprint arXiv:2308.04603 (2023)

  65. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: hiding data with deep networks. In: Proceedings of the European conference on computer vision (ECCV), pp. 657–672 (2018)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their insightful comments. This research is supported by Sony AI. Dr. Xue Lin gratefully acknowledges the support of National Science Foundation Award No. CNS-1929300. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies of the supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhou Pan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1383 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, M., Wang, Z., Dong, X., Sehwag, V., Lyu, L., Lin, X. (2025). Finding Needles in a Haystack: A Black-Box Approach to Invisible Watermark Detection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15091. Springer, Cham. https://doi.org/10.1007/978-3-031-73414-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73414-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73413-7

  • Online ISBN: 978-3-031-73414-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy