Abstract
In this paper, we propose WaterMark Detector (\(\textsc {WMD}\)), the first invisible watermark detection method under a black-box and annotation-free setting. \(\textsc {WMD}\) is capable of detecting arbitrary watermarks within a given detection dataset using a clean non-watermarked dataset as a reference, without relying on specific decoding methods or prior knowledge of the watermarking techniques. We develop \(\textsc {WMD}\) using foundations of offset learning, where a clean non-watermarked dataset enables us to isolate the influence of only watermarked samples in the reference dataset. Our comprehensive evaluations demonstrate the effectiveness of \(\textsc {WMD}\), which significantly outperforms naive detection methods with AUC scores around only 0.5. In contrast, \(\textsc {WMD}\) consistently achieves impressive detection AUC scores, surpassing 0.9 in most single-watermark datasets and exceeding 0.7 in more challenging multi-watermark scenarios across diverse datasets and watermarking methods. As invisible watermarks become increasingly prevalent, while specific decoding techniques remain undisclosed, our approach provides a versatile solution and establishes a path toward increasing accountability, transparency, and trust in our digital visual content.
Work done during Minzhou Pan’s and Zhenting Wang’s internship at Sony AI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Stable Diffusion Image Variations. https://huggingface.co/lambdalabs/sd-image-variations-diffusers
(Dec 2023). https://www.europarl.europa.eu/thinktank/de/document/EPRS_BRI(2023)757583
(Aug 2023). https://journal.everypixel.com/ai-image-statistics
Midjourney v5 prompt dataset (2023). https://huggingface.co/datasets/tarungupta83/MidJourney_v5_Prompt_dataset
(Jan 2024). https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240AB1824
(Feb 2024). https://photutorial.com/midjourney-statistics/
Achiam, J., et al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)
Alemohammad, S., et al.: Self-consuming generative models go mad (2023)
Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)
Bamatraf, A., Ibrahim, R., Salleh, M.N.B.M.: Digital watermarking algorithm using LSB. In: 2010 International Conference on Computer Applications and Industrial Electronics, pp. 155–159 (2010). https://doi.org/10.1109/ICCAIE.2010.5735066
Boland, F., O’Ruanaidh, J., Dautzenberg, C.: Watermarking digital images for copyright protection. In: Fifth International Conference on Image Processing and its Applications, 1995, pp. 326–330 (1995). https://doi.org/10.1049/cp:19950674
Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)
Byrnes, O., La, W., Wang, H., Ma, C., Xue, M., Wu, Q.: Data hiding with deep learning: a survey unifying digital watermarking and steganography. arXiv preprint arXiv:2107.09287 (2021)
Carlini, N., et al.: Extracting training data from diffusion models. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 5253–5270 (2023)
Chang, C.C., Tsai, P., Lin, C.C.: SVD-based digital image watermarking scheme. Pattern Recogn. Lett. 26(10), 1577–1586 (2005)
Cheetham, K.D., Joshua: fake trump arrest photos: how to spot an AI-generated image (2023). https://www.bbc.com/news/world-us-canada-65069316
Cheng, D., et al.: Large-scale visible watermark detection and removal with deep convolutional networks. In: Lai, J.-H., Liu, C.-L., Chen, X., Zhou, J., Tan, T., Zheng, N., Zha, H. (eds.) PRCV 2018. LNCS, vol. 11258, pp. 27–40. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03338-5_3
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
Fernandez, P., Couairon, G., Jégou, H., Douze, M., Furon, T.: The stable signature: Rooting watermarks in latent diffusion models. arXiv preprint arXiv:2303.15435 (2023)
Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset (2007)
He, X., Xu, Q., Lyu, L., Wu, F., Wang, C.: Protecting intellectual property of language generation APIS with lexical watermark. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10758–10766 (2022)
He, X., et al.: Cater: intellectual property protection on text generation Apis via conditional watermarks. Adv. Neural. Inf. Process. Syst. 35, 5431–5445 (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Jiang, Z., Zhang, J., Gong, N.Z.: Evading watermark based detection of AI-generated content. arXiv preprint arXiv:2305.03807 (2023)
Just, H.A., et al.: Lava: data valuation without pre-specified learning algorithms. arXiv preprint arXiv:2305.00054 (2023)
Kheddar, H., Hemis, M., Himeur, Y., Megías, D., Amira, A.: Deep learning for steganalysis of diverse data types: a review of methods, taxonomy, challenges and future directions. Neurocomputing 127528 (2024)
Li, G., Chen, Y., Zhang, J., Li, J., Guo, S., Zhang, T.: Towards the vulnerability of watermarking artificial intelligence generated content. arXiv preprint arXiv:2310.07726 (2023)
Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In: International Conference on Machine Learning, pp. 19730–19742. PMLR (2023)
Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)
Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-specific triggers. In: IEEE International Conference on Computer Vision (ICCV) (2021)
Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV 2014, Part V 13. pp. 740–755. Springer (2014)
Lu, Z., Huang, D., Bai, L., Liu, X., Qu, J., Ouyang, W.: Seeing is not always believing: a quantitative study on human perception of AI-generated images. arXiv preprint arXiv:2304.13023 (2023)
Lukas, N., Diaa, A., Fenaux, L., Kerschbaum, F.: Leveraging optimization for adaptive attacks on image watermarks. arXiv preprint arXiv:2309.16952 (2023)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Navas, K.A., Ajay, M.C., Lekshmi, M., Archana, T.S., Sasikumar, M.: DWT-DCT-SVD based watermarking. In: 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE 2008), pp. 271–274 (2008). https://doi.org/10.1109/COMSWA.2008.4554423
OpenAI. Watermark in dall\(\cdot \)e 3 (2023). https://help.openai.com/en/articles/8912793-c2pa-in-dall-e-3
O’Ruanaidh, J.J., Pun, T.: Rotation, scale and translation invariant digital image watermarking. In: Proceedings of International Conference on Image Processing, vol. 1, pp. 536–539. IEEE (1997)
Pan, M., Zeng, Y., Lyu, L., Lin, X., Jia, R.: ASSET: robust backdoor data detection across a multiplicity of deep learning paradigms. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 2725–2742. USENIX Association, Anaheim (2023). https://www.usenix.org/conference/usenixsecurity23/presentation/pan
Peng, W., et al.: Are you copying my model? protecting the copyright of large language models for EAAS via backdoor watermark. In: The 61st Annual Meeting of the Association for Computational Linguistics (2023)
Qi, X., Xie, T., Wang, J.T., Wu, T., Mahloujifar, S., Mittal, P.: Towards a proactive \(\{\)ML\(\}\) approach for detecting backdoor poison samples. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 1685–1702 (2023)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Saberi, M., et al.: Robustness of AI-image detectors: Fundamental limits and practical attacks. arXiv preprint arXiv:2310.00076 (2023)
Sandoval-Segura, P., Singla, V., Geiping, J., Goldblum, M., Goldstein, T., Jacobs, D.: Autoregressive perturbations for data poisoning. Adv. Neural. Inf. Process. Syst. 35, 27374–27386 (2022)
Santoyo-Garcia, H., Fragoso-Navarro, E., Reyes-Reyes, R., Sanchez-Perez, G., Nakano-Miyatake, M., Perez-Meana, H.: An automatic visible watermark detection method using total variation. In: 2017 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1–5. IEEE (2017)
Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)
Shan, S., Cryan, J., Wenger, E., Zheng, H., Hanocka, R., Zhao, B.Y.: Glaze: protecting artists from style mimicry by \(\{\)Text-to-Image\(\}\) models. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 2187–2204 (2023)
Singh, H.K., Singh, A.K.: Comprehensive review of watermarking techniques in deep-learning environments. J. Electron. Imaging 32(03) (2022). https://doi.org/10.1117/1.jei.32.3.031804
Sohn, K., Li, C.L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)
Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: invisible hyperlinks in physical photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117–2126 (2020)
Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn, M., Ho, A.: Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv preprint arXiv:2211.04325 (2022)
Wang, Z., Chen, C., Lyu, L., Metaxas, D.N., Ma, S.: Diagnosis: detecting unauthorized data usages in text-to-image diffusion models. In: The Twelfth International Conference on Learning Representations (2024)
Wang, Z., Chen, C., Zeng, Y., Lyu, L., Ma, S.: Where did i come from? origin attribution of AI-generated images. Adv. Neural Inf. Process. Syst. 36 (2024)
Wang, Z., Sehwag, V., Chen, C., Lyu, L., Metaxas, D.N., Ma, S.: How to trace latent generative model generated images without artificial watermark? arXiv preprint arXiv:2405.13360 (2024)
Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: Diffusiondb: a large-scale prompt gallery dataset for text-to-image generative models. arXiv preprint arXiv:2210.14896 (2022)
Wen, Y., Kirchenbauer, J., Geiping, J., Goldstein, T.: Tree-ring watermarks: fingerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030 (2023)
Woo, S., et al.: Convnext v2: co-designing and scaling convnets with masked autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16133–16142 (2023)
Zavrtanik, V., Kristan, M., Skočaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)
Zeng, Y., Park, W., Mao, Z.M., Jia, R.: Rethinking the backdoor attacks’ triggers: a frequency perspective. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16473–16481 (2021)
Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12104–12113 (2022)
Zhang, C., Lin, C., Benz, P., Chen, K., Zhang, W., Kweon, I.S.: A brief survey on deep learning based data hiding. arXiv preprint arXiv:2103.01607 (2021)
Zhao, X., et al.: Invisible image watermarks are provably removable using generative AI (2023)
Zhong, X., Das, A., Alrasheedi, F., Tanvir, A.: Deep learning based image watermarking: a brief survey. arXiv preprint arXiv:2308.04603 (2023)
Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: hiding data with deep networks. In: Proceedings of the European conference on computer vision (ECCV), pp. 657–672 (2018)
Acknowledgements
We thank the anonymous reviewers for their insightful comments. This research is supported by Sony AI. Dr. Xue Lin gratefully acknowledges the support of National Science Foundation Award No. CNS-1929300. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies of the supporting.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pan, M., Wang, Z., Dong, X., Sehwag, V., Lyu, L., Lin, X. (2025). Finding Needles in a Haystack: A Black-Box Approach to Invisible Watermark Detection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15091. Springer, Cham. https://doi.org/10.1007/978-3-031-73414-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-73414-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73413-7
Online ISBN: 978-3-031-73414-4
eBook Packages: Computer ScienceComputer Science (R0)