Abstract
We consider the problem of learning one of three possible fuzzy generalizations of the Jaccard similarity measure, based on the d-Choquet integral. Each of the resulting fuzzy similarity measures is parameterized by a capacity and by a real parameter. The capacity describes the weights assigned to groups of attributes and their interactions, while the real parameter is related to the restricted dissimilarity function used to evaluate differences among attributes. To face identifiability issues and in view of an XAI use of the learned capacity, the parameters’ set is restricted to the set of (at most) 2-additive completely monotone capacities. Next, under a suitable definition of entropy for completely monotone capacities, we address different entropic regularization schemes to single out interactions between groups of attributes. This is done by taking as reference a local uniform Möbius inverse over sets of attributes with the same cardinality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, K., Mesiarova-Zemankova, A.: Choosing t-norms and t-conorms for fuzzy controllers. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), vol. 2, pp. 641–646 (2007)
Baioletti, M., Coletti, G., Petturiti, D.: Weighted attribute combinations based similarity measures. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 299, pp. 211–220. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31718-7_22
Bouchon-Meunier, B., Coletti, G., Lesot, M.-J., Rifqi, M.: Towards a conscious choice of a fuzzy similarity measure: a qualitative point of view. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_1
Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy Sets Syst. 84(2), 143–153 (1996)
Bresson, R.: Neural learning and validation of hierarchical multi-criteria decision aiding models with interacting criteria. Ph.D. thesis, Université Paris-Saclay (2022)
Bustince, H., et al.: d-Choquet integrals: Choquet integrals based on dissimilarities. Fuzzy Sets Syst. 414, 1–27 (2021)
Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17(3), 263–283 (1989)
Coletti, G., Bouchon-Meunier, B.: A study of similarity measures through the paradigm of measurement theory: the classic case. Soft. Comput. 23(16), 6827–6845 (2019)
Coletti, G., Bouchon-Meunier, B.: A study of similarity measures through the paradigm of measurement theory: the fuzzy case. Soft. Comput. 24(15), 11223–11250 (2020)
Coletti, G., Petturiti, D., Bouchon-Meunier, B.: A measurement theory characterization of a class of dissimilarity measures for fuzzy description profiles. In: Lesot, M.-J., et al. (eds.) IPMU 2020. CCIS, vol. 1238, pp. 258–268. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50143-3_20
Coletti, G., Petturiti, D., Bouchon-Meunier, B.: Weighted and Choquet \(L^p\) distance representation of comparative dissimilarity relations on fuzzy description profiles. Ann. Math. Artif. Intell. (2024). https://doi.org/10.1007/s10472-024-09924-y
Coletti, G., Petturiti, D., Vantaggi, B.: Fuzzy weighted attribute combinations based similarity measures. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 364–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_33
Couso, I., Garrido, L., Sánchez, L.: Similarity and dissimilarity measures between fuzzy sets: a formal relational study. Inf. Sci. 229, 122–141 (2013)
De Baets, B., De Meyer, H.: Transitivity-preserving fuzzification schemes for cardinality-based similarity measures. Eur. J. Oper. Res. 160(3), 726–740 (2005)
De Baets, B., Janssens, S., De Meyer, H.: On the transitivity of a parametric family of cardinality-based similarity measures. Int. J. Approximate Reasoning 50(1), 104–116 (2009)
Goldberger, J., Hinton, G., Roweis, S., Salakhutdinov, R.: Neighbourhood components analysis. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17. MIT Press (2004)
Grabisch, M.: K-order additive fuzzy measures. In: Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Granada, Spain, pp. 1345–1350 (1996)
Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30690-2
Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. de la Société Vaudoise des Sci. Nat. 44, 223–270 (1908)
Jiroušek, R., Shenoy, P.: A new definition of entropy of belief functions in the Dempster-Shafer theory. Int. J. Approximate Reasoning 92, 49–65 (2018)
Kaggle. https://www.kaggle.com
Kaldjob, P.K., Mayag, B., Bouyssou, D.: Study of the instability of the sign of the nonadditivity index in a Choquet integral model. In: Ciucci, D., et al. (eds.) IPMU 2022. CCIS, vol. 1602, pp. 197–209. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08974-9_16
Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann (2001)
Klement, E., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht/Boston/London (2000)
Lad, F., Sanfilippo, G., Agrò, G.: Extropy: complementary dual of entropy. Stat. Sci. 30(1), 40–58 (2015)
Lesot, M.J., Rifqi, M., Benhadda, H.: Similarity measures for binary and numerical data: a survey. Int. J. Knowl. Eng. Soft Data Paradigms 1(1), 63–84 (2009)
Marsala, C., Petturiti, D., Vantaggi, B.: Adding semantics to fuzzy similarity measures through the d-Choquet integral. In: Bouraoui, Z., Vesic, S. (eds.) ECSQARU 2023. LNCS, vol. 14294, pp. 386–399. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-45608-4_29
Miranda, L.J.V.: PySwarms: a research toolkit for Particle Swarm Optimization in Python. J. Open Source Softw. 3(21), 433 (2018)
Nguyen, H.: On entropy of random sets and possibility distributions. Anal. Fuzzy Inf. 1, 145–156 (1987)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Scozzafava, R., Vantaggi, B.: Fuzzy inclusion and similarity through coherent conditional probability. Fuzzy Sets Syst. 160(3), 292–305 (2009)
Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)
Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Acknowledgement
We acknowledge the support of the PRIN 2022 project “Models for dynamic reasoning under partial knowledge to make interpretable decisions” (Project number: 2022AP3B3B, CUP Master: J53D23004340006, CUP: B53D23009860006) funded by the European Union – Next Generation EU (Missione 4 Componente 2).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Marsala, C., Petturiti, D., Vantaggi, B. (2025). Entropic Regularization Schemes for Learning Fuzzy Similarity Measures Based on the d-Choquet Integral. In: Destercke, S., Martinez, M.V., Sanfilippo, G. (eds) Scalable Uncertainty Management. SUM 2024. Lecture Notes in Computer Science(), vol 15350. Springer, Cham. https://doi.org/10.1007/978-3-031-76235-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-76235-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76234-5
Online ISBN: 978-3-031-76235-2
eBook Packages: Computer ScienceComputer Science (R0)