Skip to main content

Entropic Regularization Schemes for Learning Fuzzy Similarity Measures Based on the d-Choquet Integral

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2024)

Abstract

We consider the problem of learning one of three possible fuzzy generalizations of the Jaccard similarity measure, based on the d-Choquet integral. Each of the resulting fuzzy similarity measures is parameterized by a capacity and by a real parameter. The capacity describes the weights assigned to groups of attributes and their interactions, while the real parameter is related to the restricted dissimilarity function used to evaluate differences among attributes. To face identifiability issues and in view of an XAI use of the learned capacity, the parameters’ set is restricted to the set of (at most) 2-additive completely monotone capacities. Next, under a suitable definition of entropy for completely monotone capacities, we address different entropic regularization schemes to single out interactions between groups of attributes. This is done by taking as reference a local uniform Möbius inverse over sets of attributes with the same cardinality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, K., Mesiarova-Zemankova, A.: Choosing t-norms and t-conorms for fuzzy controllers. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), vol. 2, pp. 641–646 (2007)

    Google Scholar 

  2. Baioletti, M., Coletti, G., Petturiti, D.: Weighted attribute combinations based similarity measures. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 299, pp. 211–220. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31718-7_22

    Chapter  Google Scholar 

  3. Bouchon-Meunier, B., Coletti, G., Lesot, M.-J., Rifqi, M.: Towards a conscious choice of a fuzzy similarity measure: a qualitative point of view. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_1

    Chapter  Google Scholar 

  4. Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy Sets Syst. 84(2), 143–153 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bresson, R.: Neural learning and validation of hierarchical multi-criteria decision aiding models with interacting criteria. Ph.D. thesis, Université Paris-Saclay (2022)

    Google Scholar 

  6. Bustince, H., et al.: d-Choquet integrals: Choquet integrals based on dissimilarities. Fuzzy Sets Syst. 414, 1–27 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17(3), 263–283 (1989)

    Article  Google Scholar 

  8. Coletti, G., Bouchon-Meunier, B.: A study of similarity measures through the paradigm of measurement theory: the classic case. Soft. Comput. 23(16), 6827–6845 (2019)

    Article  Google Scholar 

  9. Coletti, G., Bouchon-Meunier, B.: A study of similarity measures through the paradigm of measurement theory: the fuzzy case. Soft. Comput. 24(15), 11223–11250 (2020)

    Article  Google Scholar 

  10. Coletti, G., Petturiti, D., Bouchon-Meunier, B.: A measurement theory characterization of a class of dissimilarity measures for fuzzy description profiles. In: Lesot, M.-J., et al. (eds.) IPMU 2020. CCIS, vol. 1238, pp. 258–268. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50143-3_20

    Chapter  Google Scholar 

  11. Coletti, G., Petturiti, D., Bouchon-Meunier, B.: Weighted and Choquet \(L^p\) distance representation of comparative dissimilarity relations on fuzzy description profiles. Ann. Math. Artif. Intell. (2024). https://doi.org/10.1007/s10472-024-09924-y

    Article  Google Scholar 

  12. Coletti, G., Petturiti, D., Vantaggi, B.: Fuzzy weighted attribute combinations based similarity measures. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 364–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_33

    Chapter  Google Scholar 

  13. Couso, I., Garrido, L., Sánchez, L.: Similarity and dissimilarity measures between fuzzy sets: a formal relational study. Inf. Sci. 229, 122–141 (2013)

    Article  MathSciNet  Google Scholar 

  14. De Baets, B., De Meyer, H.: Transitivity-preserving fuzzification schemes for cardinality-based similarity measures. Eur. J. Oper. Res. 160(3), 726–740 (2005)

    Article  MathSciNet  Google Scholar 

  15. De Baets, B., Janssens, S., De Meyer, H.: On the transitivity of a parametric family of cardinality-based similarity measures. Int. J. Approximate Reasoning 50(1), 104–116 (2009)

    Article  MathSciNet  Google Scholar 

  16. Goldberger, J., Hinton, G., Roweis, S., Salakhutdinov, R.: Neighbourhood components analysis. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17. MIT Press (2004)

    Google Scholar 

  17. Grabisch, M.: K-order additive fuzzy measures. In: Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Granada, Spain, pp. 1345–1350 (1996)

    Google Scholar 

  18. Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30690-2

    Book  Google Scholar 

  19. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. de la Société Vaudoise des Sci. Nat. 44, 223–270 (1908)

    Google Scholar 

  20. Jiroušek, R., Shenoy, P.: A new definition of entropy of belief functions in the Dempster-Shafer theory. Int. J. Approximate Reasoning 92, 49–65 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kaggle. https://www.kaggle.com

  22. Kaldjob, P.K., Mayag, B., Bouyssou, D.: Study of the instability of the sign of the nonadditivity index in a Choquet integral model. In: Ciucci, D., et al. (eds.) IPMU 2022. CCIS, vol. 1602, pp. 197–209. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08974-9_16

    Chapter  Google Scholar 

  23. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann (2001)

    Google Scholar 

  24. Klement, E., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht/Boston/London (2000)

    Book  Google Scholar 

  25. Lad, F., Sanfilippo, G., Agrò, G.: Extropy: complementary dual of entropy. Stat. Sci. 30(1), 40–58 (2015)

    Article  MathSciNet  Google Scholar 

  26. Lesot, M.J., Rifqi, M., Benhadda, H.: Similarity measures for binary and numerical data: a survey. Int. J. Knowl. Eng. Soft Data Paradigms 1(1), 63–84 (2009)

    Article  Google Scholar 

  27. Marsala, C., Petturiti, D., Vantaggi, B.: Adding semantics to fuzzy similarity measures through the d-Choquet integral. In: Bouraoui, Z., Vesic, S. (eds.) ECSQARU 2023. LNCS, vol. 14294, pp. 386–399. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-45608-4_29

    Chapter  Google Scholar 

  28. Miranda, L.J.V.: PySwarms: a research toolkit for Particle Swarm Optimization in Python. J. Open Source Softw. 3(21), 433 (2018)

    Article  Google Scholar 

  29. Nguyen, H.: On entropy of random sets and possibility distributions. Anal. Fuzzy Inf. 1, 145–156 (1987)

    MathSciNet  Google Scholar 

  30. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  31. Scozzafava, R., Vantaggi, B.: Fuzzy inclusion and similarity through coherent conditional probability. Fuzzy Sets Syst. 160(3), 292–305 (2009)

    Article  MathSciNet  Google Scholar 

  32. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  33. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  34. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the support of the PRIN 2022 project “Models for dynamic reasoning under partial knowledge to make interpretable decisions” (Project number: 2022AP3B3B, CUP Master: J53D23004340006, CUP: B53D23009860006) funded by the European Union – Next Generation EU (Missione 4 Componente 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Petturiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marsala, C., Petturiti, D., Vantaggi, B. (2025). Entropic Regularization Schemes for Learning Fuzzy Similarity Measures Based on the d-Choquet Integral. In: Destercke, S., Martinez, M.V., Sanfilippo, G. (eds) Scalable Uncertainty Management. SUM 2024. Lecture Notes in Computer Science(), vol 15350. Springer, Cham. https://doi.org/10.1007/978-3-031-76235-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76235-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76234-5

  • Online ISBN: 978-3-031-76235-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy