Skip to main content

Integrating Classical Planners with GPT-Based Planning Policies

  • Conference paper
  • First Online:
AIxIA 2024 – Advances in Artificial Intelligence (AIxIA 2024)

Abstract

Recent works on Large Language Models (LLMs) have demonstrated their effectiveness in learning general policies in automated planning. In particular, a system called PlanGPT has achieved impressive performance in terms of coverage in various domains. However, it may produce invalid plans that either satisfy only some goal fluents of the corresponding planning problem or violate the planned actions’ preconditions. To overcome this limitation, we propose a novel neuro-symbolic approach that combines PlanGPT with a planner capable of repairing (or completing) the plan generated by PlanGPT, thereby leveraging model-based reasoning. When PlanGPT generates a candidate plan for a specific planning problem, we validate it using a symbolic validator. If the generated plan is invalid, we execute the repair procedure of the planner LPG to obtain a valid solution plan from it. In this paper, we empirically evaluate the effectiveness of our approach and demonstrate its performances across various planning domains. Our results show significant improvements in the performance of both PlanGPT and LPG, highlighting the effectiveness of combining learning methods with traditional planning techniques.

M. Tummolo was enrolled in the National Doctorate on AI conducted by Sapienza, University of Rome with the University of Brescia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, D., Kambhampati, S.: Learning and leveraging verifiers to improve planning capabilities of pre-trained language models. arXiv preprint arXiv:2305.17077 (2023)

  2. Chen, D., Thiébaux, S., Trevizan, F.: Learning domain-independent heuristics for grounded and lifted planning. In: Proceedings of 38th AAAI Conference on Artificial Intelligence (2024). http://felipe.trevizan.org/papers/chen24:goose.pdf

  3. Chen, D., Trevizan, F., Thiébaux, S.: Return to tradition: learning reliable heuristics with classical machine learning. In: Proceedings of 34th International Conference on Automated Planning and Scheduling (ICAPS) (2024). http://felipe.trevizan.org/papers/chen24:wlkernel.pdf

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  5. Geib, C.W., Steedman, M.: On natural language processing and plan recognition. In: IJCAI, pp. 1612–1617 (2007)

    Google Scholar 

  6. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs in LPG. J. Artif. Intell. Res. 20, 239–290 (2003). https://doi.org/10.1613/jair.1183

    Article  MATH  Google Scholar 

  7. Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., Berant, J.: Did Aristotle use a laptop? A question answering benchmark with implicit reasoning strategies. Trans. Assoc. Comput. Linguistics 9, 346–361 (2021)

    Article  Google Scholar 

  8. Hao, M., Trevizan, F., Thiébaux, S., Ferber, P., Hoffmann, J.: Guiding GBFS through learned pairwise rankings. In: Proceedings of 33rd International Joint Conference on AI (IJCAI) (2024). http://felipe.trevizan.org/papers/hao24:ranking.pdf

  9. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)

    Article  MATH  Google Scholar 

  10. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: ICTAI, pp. 294–301. IEEE Computer Society (2004)

    Google Scholar 

  11. Hu, Y., De Giacomo, G.: Generalized planning: synthesizing plans that work for multiple environments. In: IJCAI, pp. 918–923. IJCAI.org (2011)

    Google Scholar 

  12. Jiang, Z., Xu, F.F., Araki, J., Neubig, G.: How can we know what language models know. Trans. Assoc. Comput. Linguistics 8, 423–438 (2020)

    Article  Google Scholar 

  13. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic search. In: Proceedings of the National Conference on Artificial Intelligence, vol. 2 (1999)

    Google Scholar 

  14. Pallagani, V., et al.: Plansformer: generating symbolic plans using transformers. arXiv preprint arXiv:2212.08681 (2022)

  15. Pallagani, V., et al.: Plansformer tool: demonstrating generation of symbolic plans using transformers. In: IJCAI, pp. 7158–7162. IJCAI.org (2023)

    Google Scholar 

  16. Petroni, F., et al.: Language models as knowledge bases? In: EMNLP/IJCNLP, pp. 2463–2473. Association for Computational Linguistics (2019)

    Google Scholar 

  17. Radford, A., Narasimhan, K.: Improving language understanding by generative pre-training (2018). https://api.semanticscholar.org/CorpusID:49313245

  18. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019). https://api.semanticscholar.org/CorpusID:160025533

  19. Richter, S., Westphal, M.: The LAMA planner: guiding cost-based anytime planning with landmarks. J. Artif. Intell. Res. 39, 127–177 (2010)

    Article  MATH  Google Scholar 

  20. Rossetti, N., et al.: Learning general policies for planning through GPT models. In: 34th International Conference on Automated Planning and Scheduling (2024)

    Google Scholar 

  21. Rossetti, N., Tummolo, M., Gerevini, A.E., Putelli, L., Serina, I., Olivato, M.: Enhancing GPT-based planning policies by model-based plan validation. In: Proceedings of the 18th International Conference on Neural-Symbolic Learning and Reasoning (2024)

    Google Scholar 

  22. Seipp, J., Torralba, A., Hoffmann, J.: PDDL generators (2022). https://github.com/AI-Planning/pddl-generators

  23. Serina, L., Chiari, M., Gerevini, A.E., Putelli, L., Serina, I.: A preliminary study on BERT applied to automated planning. In: Proceedings of the 10th Italian workshop on Planning and Scheduling (IPS 2022), RCRA Incontri E Confronti (RiCeRcA 2022), and the workshop on Strategies, Prediction, Interaction, and Reasoning in Italy (SPIRIT 2022) co-located with 21st International Conference of the Italian Association for Artificial Intelligence (AI*IA 2022), November 28 – December 2, 2022, University of Udine, Udine, Italy. CEUR Workshop Proceedings, vol. 3345. CEUR-WS.org (2022)

    Google Scholar 

  24. Serina, L., Putelli, L., Gerevini, A.E., Serina, I.: Synonyms, antonyms and factual knowledge in BERT heads. Future Internet 15(7), 230 (2023). https://doi.org/10.3390/fi15070230

    Article  MATH  Google Scholar 

  25. Srivastava, S., Immerman, N., Zilberstein, S.: Learning generalized plans using abstract counting. In: AAAI, pp. 991–997. AAAI Press (2008)

    Google Scholar 

  26. Srivastava, S., Immerman, N., Zilberstein, S.: A new representation and associated algorithms for generalized planning. Artif. Intell. 175(2), 615–647 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ståhlberg, S., Bonet, B., Geffner, H.: Learning general optimal policies with graph neural networks: expressive power, transparency, and limits. In: ICAPS, pp. 629–637. AAAI Press (2022)

    Google Scholar 

  28. Ståhlberg, S., Bonet, B., Geffner, H.: Learning generalized policies without supervision using GNNs. In: KR, pp. 474–483. IJCAI Org. (2022)

    Google Scholar 

  29. Stahlberg, S., Bonet, B., Geffner, H.: Muninn (2023). https://ipc2023-learning.github.io/abstracts/muninn.pdf

  30. Valmeekam, K., Hernandez, A.O., Sreedharan, S., Kambhampati, S.: Large language models still can’t plan, a benchmark for LLMs on planning and reasoning about change. arXiv preprint arXiv:2206.10498 (2022)

  31. Valmeekam, K., Marquez, M., Sreedharan, S., Kambhampati, S.: On the planning abilities of large language models - a critical investigation. In: NeurIPS (2023)

    Google Scholar 

  32. Valmeekam, K., Sreedharan, S., Marquez, M., Hernandez, A.O., Kambhampati, S.: On the planning abilities of large language models, a critical investigation with a proposed benchmark. arXiv preprint arXiv:2302.06706 (2023)

  33. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008. Curran Associates Inc. (2017)

    Google Scholar 

  34. Wang, Y., Wang, W., Joty, S.R., Hoi, S.C.H.: CodeT5: identifier-aware unified pre-trained encoder-decoder models for code understanding and generation. In: EMNLP, pp. 8696–8708. Association for Computational Linguistics (2021)

    Google Scholar 

Download references

Acknowledgements

This work was been supported by EU H2020 project AIPlan4EU (GA 101016442), EU ICT-48 2020 project TAILOR (GA 952215), MUR PRIN project RIPER (No. 20203FFYLK), Climate Change AI project (No. IG-2023-174), Regione Lombardia through the initiatives “Il Piano Lombardia - Interventi per la ripresa economica” and “Programma degli interventi per la ripresa economica: sviluppo di nuovi accordi di collaborazione con le università per la ricerca, l’innovazione e il trasferimento tecnologico” - DGR n. XI/4445/2021 and by SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massimiliano Tummolo or Alfonso Emilio Gerevini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tummolo, M., Rossetti, N., Gerevini, A.E., Olivato, M., Putelli, L., Serina, I. (2025). Integrating Classical Planners with GPT-Based Planning Policies. In: Artale, A., Cortellessa, G., Montali, M. (eds) AIxIA 2024 – Advances in Artificial Intelligence. AIxIA 2024. Lecture Notes in Computer Science(), vol 15450. Springer, Cham. https://doi.org/10.1007/978-3-031-80607-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80607-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80606-3

  • Online ISBN: 978-3-031-80607-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy