Skip to main content

Face Representation Using Averaged Wavelet, Micro Patterns and Recognition Using RBF Network

  • Conference paper
Mining Intelligence and Knowledge Exploration

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8284))

  • 2665 Accesses

Abstract

Recognition of human faces is a very important task in many applications such as authentication and surveillance. An efficient face recognition system with face image representation using averaged wavelet and wavelet packet coefficients, Discriminative Common Vector (DCV) and modified Local Binary Patterns (LBP) and recognition using radial basis function (RBF) network is presented. Face images are decomposed by 2-level wavelet and wavelet packet transformation. The discriminative common vectors are obtained for averaged wavelet. The new proposed LBP operator is applied on the obtained DCV and also applied on averaged wavelet packet coefficients of all the samples of a class. The histogram values obtained from the LBP are recognized using RBF network. The proposed work is tested on three face databases such as Olivetti Oracle Research Lab (ORL), Japanese Female Facial Expression (JAFFE) and Essex face database. The proposed method results in good recognition rates along with less training time because of the extracted discriminant input from the preprocessing steps involved in the proposed work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs Fisher faces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis Machine Intelligence 20(7), 711–720 (1997)

    Article  Google Scholar 

  3. Carlos, M.T., Marcos, D.P., Miguel, A.F., Jesus, B.A.: Reducing Features using Discriminative Common Vectors. Cognitive Computation 2, 160–164 (2010)

    Article  Google Scholar 

  4. Cevikalp, H., Neamtu, M., Wilkes, M.: Discriminative common vectors method with kernels. IEEE Trans. Neural Network 17(6), 1550–1565 (2006)

    Article  Google Scholar 

  5. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Trans. Pattern Analysis Machine Intelligence 27(1), 4–13 (2005)

    Article  Google Scholar 

  6. Er, M.J., Wu, S., Lu, J., Toh, H.L.: Face Recognition with Radial Basis Function (RBF) Neural Networks. IEEE Transactions on Neural Networks 13(3), 697–710 (2002)

    Article  Google Scholar 

  7. Feng, G.C., Yuen, P.C., Dai, D.Q.: Human face recognition using PCA on wavelet subband. J. Electron. Imaging 9, 226–233 (2001)

    Google Scholar 

  8. Garcia, C., Zikos, G., Tziritas, G.: Wavelet packet analysis for face recognition. Image and Vision Computing 18, 289–297 (2000)

    Article  Google Scholar 

  9. Jing, X.Y., Yao, Y.F., Yang, J.Y., Zhang, D.: A novel face recognition approach based on kernel discriminative common vectors (KDCV) feature extraction and RBF neural network. Neurocomputing 71, 3044–3048 (2008)

    Article  Google Scholar 

  10. Kathirvalavakumar, T., Vasanthi, J.J.B.: Face representation using Wavelet, DCV and Modified Local Binary Patterns and Recognition by RBF. Journal of Machine Learning and Cybernetics (2013)

    Google Scholar 

  11. Li, B., Yin, H.: Face Recognition Using RBF Neural Networks and Wavelet Transform. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 105–111. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  13. Pujol, A.F., Garca, J.C.: Computing the Principal Local Binary Patterns for face recognition using data mining tools. Expert Systems with Applications 39(8), 7165–7172 (2012)

    Article  Google Scholar 

  14. Swets, D.L., Weng, J.: Using Discriminant Eigen features for Image Retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence 18(8), 831–836 (1996)

    Article  Google Scholar 

  15. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(7), 71–86 (1991)

    Article  Google Scholar 

  16. Perlibakas, V.: Face Recognition Using Principal Component Analysis and Wavelet Packet Decomposition. INFORMATICA 15(2), 243–250 (2004)

    MATH  Google Scholar 

  17. Wen, Y.: An improved discriminative common vectors and support vector machine based face recognition approach. Expert Systems with Applications 39(4), 4628–4632 (2012)

    Article  Google Scholar 

  18. Wong, Y.W., Seng, K.P., Ang, L.M.: Dual optimal multiband features for face recognition. Expert Systems with Applications 37(4), 2957–2962 (2010)

    Article  Google Scholar 

  19. Wong, Y.W.: Radial Basis Function Neural Network with Incremental Learning for Face Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(4), 940–949 (2011)

    Article  Google Scholar 

  20. Zhang, B.L., Zhang, H., Ge, S.S.: Face Recognition by Applying Wavelet Subband Representation and Kernel Associative Memory. IEEE Transactions on Neural networks 15(1), 166–177 (2005)

    Article  MathSciNet  Google Scholar 

  21. Zhou, S.R., Yin, J.P., Zhang, J.M.: Local binary pattern (LBP) and local phase quantization (LBQ) based on Gabor filter for face representation. Neurocomputing 116(20), 260–264 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kathirvalavakumar, T., Vasanthi, J.J.B. (2013). Face Representation Using Averaged Wavelet, Micro Patterns and Recognition Using RBF Network. In: Prasath, R., Kathirvalavakumar, T. (eds) Mining Intelligence and Knowledge Exploration. Lecture Notes in Computer Science(), vol 8284. Springer, Cham. https://doi.org/10.1007/978-3-319-03844-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03844-5_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03843-8

  • Online ISBN: 978-3-319-03844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy