Abstract
In this paper, we adopt various greedy result diversification strategies to the problem of feature selection for learning to rank. Our experimental evaluations using several standard datasets reveal that such diversification methods are quite effective in identifying the feature subsets in comparison to the baselines from the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proc. of SIGIR 1998 (1998)
Chelaru, S.V., Orellana-Rodriguez, C., Altingovde, I.S.: How useful is social feedback for learning to rank youtube videos? WWW Journal, 1–29 (in press), doi:10.1007/s11280-013-0258-9
Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles based on feature selection. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 109–116. Springer, Heidelberg (2000)
Dang, V., Croft, W.B.: Feature selection for document ranking using best first search and coordinate ascent. In: Proc. SIGIR 2010 Workshop on Feature Generation and Selection for Information Retrieval (2010)
Geng, X., Liu, T.-Y., Qin, T., Li, H.: Feature selection for ranking. In: Proc. of SIGIR 2007, pp. 407–414 (2007)
Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: Proc. of WWW 2009, pp. 381–390 (2009)
Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, pp. 115–132 (2000)
Peng, H., Long, F., Ding, C.H.Q.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: Proc. of WWW 2010, pp. 781–790 (2010)
Santos, R.L.T., Castells, P., Altingovde, I.S., Can, F.: Diversity and novelty in information retrieval. In: Proc. of SIGIR 2013, p. 1130 (2013)
Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou, M., Srivastava, D., Train Jr., C., Tsotras, V.J.: On query result diversification. In: Proc. of ICDE 2011, pp. 1163–1174 (2011)
Wang, J., Zhu, J.: Portfolio theory of information retrieval. In: Proc. of SIGIR, pp. 115–122 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Djafari Naini, K., Altingovde, I.S. (2014). Exploiting Result Diversification Methods for Feature Selection in Learning to Rank. In: de Rijke, M., et al. Advances in Information Retrieval. ECIR 2014. Lecture Notes in Computer Science, vol 8416. Springer, Cham. https://doi.org/10.1007/978-3-319-06028-6_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-06028-6_41
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06027-9
Online ISBN: 978-3-319-06028-6
eBook Packages: Computer ScienceComputer Science (R0)