Skip to main content

Exploiting Result Diversification Methods for Feature Selection in Learning to Rank

  • Conference paper
Advances in Information Retrieval (ECIR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8416))

Included in the following conference series:

Abstract

In this paper, we adopt various greedy result diversification strategies to the problem of feature selection for learning to rank. Our experimental evaluations using several standard datasets reveal that such diversification methods are quite effective in identifying the feature subsets in comparison to the baselines from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proc. of SIGIR 1998 (1998)

    Google Scholar 

  2. Chelaru, S.V., Orellana-Rodriguez, C., Altingovde, I.S.: How useful is social feedback for learning to rank youtube videos? WWW Journal, 1–29 (in press), doi:10.1007/s11280-013-0258-9

    Google Scholar 

  3. Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles based on feature selection. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 109–116. Springer, Heidelberg (2000)

    Google Scholar 

  4. Dang, V., Croft, W.B.: Feature selection for document ranking using best first search and coordinate ascent. In: Proc. SIGIR 2010 Workshop on Feature Generation and Selection for Information Retrieval (2010)

    Google Scholar 

  5. Geng, X., Liu, T.-Y., Qin, T., Li, H.: Feature selection for ranking. In: Proc. of SIGIR 2007, pp. 407–414 (2007)

    Google Scholar 

  6. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: Proc. of WWW 2009, pp. 381–390 (2009)

    Google Scholar 

  7. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, pp. 115–132 (2000)

    Google Scholar 

  8. Peng, H., Long, F., Ding, C.H.Q.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  9. Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: Proc. of WWW 2010, pp. 781–790 (2010)

    Google Scholar 

  10. Santos, R.L.T., Castells, P., Altingovde, I.S., Can, F.: Diversity and novelty in information retrieval. In: Proc. of SIGIR 2013, p. 1130 (2013)

    Google Scholar 

  11. Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou, M., Srivastava, D., Train Jr., C., Tsotras, V.J.: On query result diversification. In: Proc. of ICDE 2011, pp. 1163–1174 (2011)

    Google Scholar 

  12. Wang, J., Zhu, J.: Portfolio theory of information retrieval. In: Proc. of SIGIR, pp. 115–122 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Djafari Naini, K., Altingovde, I.S. (2014). Exploiting Result Diversification Methods for Feature Selection in Learning to Rank. In: de Rijke, M., et al. Advances in Information Retrieval. ECIR 2014. Lecture Notes in Computer Science, vol 8416. Springer, Cham. https://doi.org/10.1007/978-3-319-06028-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06028-6_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06027-9

  • Online ISBN: 978-3-319-06028-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy