Abstract
Metaheuristic design is an incremental and difficult task. It is usually iterative and requires several evaluations of the code to obtain an algorithm with good performance. In this work, we analyse the design of metaheuristics by detecting components which are strictly necessary to obtain a good performance (in term of solutions quality). We use a collective strategy where the information generated by a tuner is used to detect the components usefulness. We evaluate this strategy with two well-known tuners EVOCA and I-RACE to analyse which one is more suitable and provides better results to make this components detection. The goal is to help the designer either to evaluate during the design process different options of the code or to simplify her/his final code without a loss in the quality of the solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation—The New Experimentalism. Natural Computing Series. Springer (2006)
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for Configuring Metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann, USA (2002)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race: An Overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010)
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 457–474. Springer, US (2003)
Eiben, A.E., Smit, S.K.: Parameter Tuning for Configuring and Analyzing Evolutionary Algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)
Fukunaga, A.: Automated Discovery of Composite SAT Variable Selection Heuristics. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 641–648 (2002)
Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)
Kauffman, S.A.: Adaptation on Rugged Fitness Landscapes. Lecture Notes in the Sciences of Complexity 1, 527–618 (1989)
Montero, E., Riff, M.C., Neveu, B.: A Beginner’s Guide to Tuning Methods. Applied Soft Computing 17(0), 39–51 (2014)
Pelikan, M.: Analysis of Estimation of Distribution Algorithms and Genetic Algorithms on NK landscapes. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO, pp. 1033–1040. ACM, USA (2008)
Pierrard, T., Coello Coello, C.A.: A Multi-Objective Artificial Immune System Based on Hypervolume. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 14–27. Springer, Heidelberg (2012)
Riff, M.C., Montero, E.: A New Algorithm for Reducing Metaheuristic Design Effort. In: IEEE Congress on Evolutionary Computation (CEC 2013), Cancún, México, pp. 3283–3290 (June 2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Montero, E., Riff, MC. (2014). Towards a Method for Automatic Algorithm Configuration: A Design Evaluation Using Tuners. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-10762-2_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10761-5
Online ISBN: 978-3-319-10762-2
eBook Packages: Computer ScienceComputer Science (R0)