Abstract
This paper aims at detecting traces of median filtering in digital images, a problem of paramount importance in forensics given that filtering can be used to conceal traces of image tampering such as resampling and light direction in photomontages. To accomplish this objective, we present a novel approach based on multiple and multiscale progressive perturbations on images able to capture different median filtering traces through using image quality metrics. Such measures are then used to build a discriminative feature space suitable for proper classification regarding whether or not a given image contains signs of filtering. Experiments using a real-world scenario with compressed and uncompressed images show the effectiveness of the proposed method.
The authors thank the financial support of CNPq (Grants #477662/2013-7, and #304352/2012-8), FAPESP (Grant #2010/05647-4), and Microsoft Research.
Chapter PDF
Similar content being viewed by others
References
Popescu, A.C., Farid, H.: Statistical tools for digital forensics. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004)
Kirchner, M., Bohme, R.: Hiding traces of resampling in digital images. IEEE Trans. on Inf. For. and Sec. 3, 582–592 (2008)
Johnson, M.K., Farid, H.: Exposing digital forgeries through specular highlights on the eye. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 311–325. Springer, Heidelberg (2008)
Saboia, P., Carvalho, T., Rocha, A.: Eye specular highlights telltales for digital forensics: a machine learning approach. In: Intl. Conference on Image Processing, pp. 1977–1980 (2011)
Kirchner, M., Fridrich, J.: On detection of median filtering in digital images. In SPIE Media Forensics and Security II, pp. 754110-754110-12 (2010).
Cao, G., Zhao, Y., Ni, R., Yu, L., Tian, H.: Forensic detection of median filtering in digital images. In: IEEE Intl. Conference on Multimedia & Expo, pp. 89–94 (2010)
Yuan, H.D.: Blind forensics of median filtering in digital images. IEEE Trans. on Infor. For. and Sec. 6, 1335–1345 (2011)
Chen, C., Ni, J.: Median filtering detection using edge based prediction matrix. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 361–375. Springer, Heidelberg (2012)
Chen, C., Ni, J., Huang, R., Huang, J.: Blind median filtering detection using statistics in difference domain. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 1–15. Springer, Heidelberg (2013)
Chen, C., Ni, J., Huang, J.: Blind detection of median filtering in digital images: A difference domain based approach. IEEE Trans. on Im. Proc. 22, 4699–4710 (2013)
Kang, X., Stamm, M., Peng, A., Liu, K.: Robust median filtering forensics using an autoregressive model. IEEE Trans. on Infor. For. and Sec. 8, 1456–1468 (2013)
Kang, X., Stamm, M., Peng, A., Liu, K.: Robust median filtering forensics based on the autoregressive model of median filtered residual. In: IEEE Signal Information Processing Association Annual Summit and Conference, pp. 1–9 (2012)
Bovik, A.: Streaking in median filtered images. IEEE Trans. on Acous. Sp. and Sig. Proc. 35, 493–503 (1987)
Thung, K., Raveendran, P.: A survey of image quality measures. In: IEEE Intl. Conference for Technical Postgraduates, pp. 1–4 (2009)
Eskicioglu, A., Fisher, P.: Image quality measures and their performance. IEEE Trans. on Comm. 43, 2959–2965 (1995)
Wang, Z., Bovik, A., Sheikh, H.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Im. Proc. 13, 600–612 (2004)
Rocha, A., Goldenstein, S.: Progressive randomization: Seeing the unseen. Elsevier Comput. Vis. and Im. Underst. 114, 349–362 (2010)
Avcibas, I., Bayram, S., Memon, N., Ramkumar, M., Sankur, B.: A classifier design for detecting image manipulations. In: IEEE Intl. Conference on Image Processing, pp. 2645–2648 (2004)
Avcibas, I., Memon, N., Sankur, B.: Steganalysis based on image quality metrics. In: IEEE Workshop on Multimedia and Signal Processing, pp. 517–522 (2001)
Casia tampered image detection database, http://forensics.idealtest.org/
Schaefer, G., Stich, M.: Ucid - an uncompressed colour image database. In: Storage and Retrieval Methods and Applications for Multimedia, pp. 472–480 (2004)
Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Trans. on Intell. Syst. and Tech. 2, 27:1-27:27 (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Fontani, M., Barni, M.: Hiding traces of median filtering in digital images. In: European Signal Processing Conference, pp. 1239–1243 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ferreira, A., Rocha, A. (2014). A Multiscale and Multi-Perturbation Blind Forensic Technique for Median Detecting. In: Bayro-Corrochano, E., Hancock, E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. Springer, Cham. https://doi.org/10.1007/978-3-319-12568-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-12568-8_37
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12567-1
Online ISBN: 978-3-319-12568-8
eBook Packages: Computer ScienceComputer Science (R0)