Skip to main content

Autonomous Learning of Procedural Knowledge in an Evolutionary Cognitive Architecture for Robots

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

Abstract

This paper describes a procedure to provide a way for the Multilevel Darwinist Brain evolutionary cognitive architecture to be able to learn and preserve procedural knowledge while operating on-line. This procedural knowledge is acquired in the form of ANNs that implement behaviors in the sense of traditional evolutionary robotics. The behaviors are produced in real time as the robot is interacting with the world. It is interesting to see in the results presented that this approach of learning procedural representations instead of exhaustively selecting the appropriate action every instant of time provides better generalization results and more efficient action sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asada, M., MacDorman, K.F., Ishiguro, H., Kuniyoshi, Y.: Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robot. Auton. Syst. 37, 185–193 (2001)

    Article  MATH  Google Scholar 

  2. Krichmar, J.L., Edelman, G.M.: Principles underlying the construction of brain-based devices. In: Proceedings of AISB 2006, vol. 2, pp. 37–42 (2006)

    Google Scholar 

  3. Laird, J.E.: Extending the soar cognitive architecture. In: Proceeding of the 2008 Conference on Artificial General Intelligence, pp. 224–235. IOS Press, Amsterdam (2008)

    Google Scholar 

  4. Franklin, S.: Cognitive robots: perceptual associative memory and learning. In: IEEE International Workshop on Robot and Human Interactive Communication, pp. 427–433 (2005)

    Google Scholar 

  5. Bach, J.: Principles of synthetic intelligence PSI: an architecture of motivated cognition, 1st edn. Oxford University Press Inc., New York (2009)

    Book  Google Scholar 

  6. Goertzel, B., de Garis, H.: XIA-MAN: an extensible, integrative architecture for intelligent humanoid robotics. In: Proceedings of the BICA 2008, pp. 86–90 (2008)

    Google Scholar 

  7. Kawamura, K., Gordon, S., Ratanaswasd, P., Erdemir, E., Hall, J.: Implementation of cognitive control for a humanoid robot. Int. J. Humanoid Rob. 5(4), 547–586 (2008)

    Article  Google Scholar 

  8. Atkinson, R., Shiffrin, R.: Human memory: A proposed system and its control processes. Psychol. Learn. Motivation 2, 89–195 (1968)

    Article  Google Scholar 

  9. Baddeley, A.D., Hitch, G.: Working memory. In: Bower, G.H. (ed.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 8, pp. 47–89 (1974)

    Google Scholar 

  10. Solms, M., Turnbull, O.: The Brain and the Inner World. Karnac/Other Press, Cathy Miller Foreign Rights Agency, London (2002)

    Google Scholar 

  11. Cowan, N.: What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169, 323–338 (2008)

    Article  Google Scholar 

  12. Duro, R.J., Santos, J., Bellas, F., Lamas, A.: On line darwinist cognitive mechanism for an artificial organism. In: Proceedings Supplement Book SAB2000, pp. 215–224 (2000)

    Google Scholar 

  13. Bellas, F., Duro, R.J.: Multilevel darwinist brain in robots, initial implementation. In: Proceedings IROS 2004, pp. 25–32 (2004)

    Google Scholar 

  14. Bellas, F., Becerra, J.A., Duro, R.J.: Induced behavior in a real agent using the multilevel darwinist brain. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 425–434. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Bellas, F., Becerra, J.A., Duro, R.J.: Internal and external memory in neuroevolution for learning in non-stationary problems. In: Asada, M., Hallam, J.C., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 62–72. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Bellas, F., Duro, R.J., Faiña, A., Souto, D.: Multilevel Darwinist Brain (MDB): Artificial evolution in a cognitive architecture for real robots. IEEE Trans. Auton. Ment. Dev. 2(4), 340–354 (2010)

    Article  Google Scholar 

  17. Santos-Diez, B., Bellas, F., Faiña, A., Duro, R.J.: Lifelong learning by evolution in robotics: Bridging the gap from theory to reality. In: Proceedings EIS 2010, pp. 48–53 (2010)

    Google Scholar 

  18. Duro, R.J., Bellas, F., Caamaño, P., Varela, G.: Automatic model decomposition and reuse in an evolutionary cognitive mechanism. Evol. Syst. 1(2), 129–141 (2010)

    Article  Google Scholar 

  19. Duro, R.J., Bellas, F., Becerra, J.A.: Evolutionary architecture for lifelong learning and real-time operation in autonomous robots. In: Angelov, P., Filev, D.P., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications. Wiley, Hoboken (2010)

    Google Scholar 

  20. Bellas, F., Caamaño, P., Faiña, A., Duro, R.J.: Dynamic learning in cognitive robotics through a procedural long term memory. Evol. Syst. 5(1), 49–63 (2014)

    Article  Google Scholar 

  21. Duro, R.J., Bellas, F., Becerra, J.A., Salgado, R.: A role for sleep in artificial cognition through deferred restructuring of experience in autonomous machines. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS, vol. 8575, pp. 1–10. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Caamaño, P., Tedín, R., Paz-López, A., Becerra, J.A.: JEAF: A java evolutionary algorithm framework. In: Proceedings WCCI 2010, pp. 3081–3088 (2010)

    Google Scholar 

Download references

Acknowledgements

Funding for this work was related to the preparation of the DREAM project in the EU’s H2020 R&I programme under grant agreement No 640891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Bellas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Salgado, R., Bellas, F., Duro, R.J. (2015). Autonomous Learning of Procedural Knowledge in an Evolutionary Cognitive Architecture for Robots. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy