Skip to main content

Friendship Link Recommendation Based on Content Structure Information

  • Conference paper
  • First Online:
Web-Age Information Management (WAIM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9098))

Included in the following conference series:

  • 2831 Accesses

Abstract

Intuitively, a friendship link between two users can be recommended based on the similarity of their generated text content or structure information. Although this problem has been extensively studied, the challenge of how to effectively incorporate the information from the social interaction and user generated content remains largely open. We propose a model (LRCS) to recommend user’s potential friends by incorporating user’s generated content and structure features. First, network users are clustered based on the similarity of user’s interest and structural features. Users in the same cluster with the query user are considered as the candidate friends. Then, a weighted SimRank algorithm is proposed to recommend the most similar users as the friends. Experiments on two real-life datasets show the superiority of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yin, Z., Gupta, M., Weninger, T., Han, J.: A unified framework for link recommendation using random walks. In: International Conference on Advances in Social Networks Analysis and Mining (2010)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Parimi, R., Caragea, D.: Predicting friendship links in social networks using a topic modeling approach. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 75–86. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Tang, W., Zhuang, H., Tang, J.: Learning to infer social ties in large networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 381–397. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Tang, J., Lou, T., Kleinberg, J.: Inferring social ties across heterogenous networks. In: 5th International ACM Conference on Web Search and Data Mining (2012)

    Google Scholar 

  6. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, X., Deng, Q., Li, Z. (2015). Friendship Link Recommendation Based on Content Structure Information. In: Dong, X., Yu, X., Li, J., Sun, Y. (eds) Web-Age Information Management. WAIM 2015. Lecture Notes in Computer Science(), vol 9098. Springer, Cham. https://doi.org/10.1007/978-3-319-21042-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21042-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21041-4

  • Online ISBN: 978-3-319-21042-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy