Abstract
Intuitively, a friendship link between two users can be recommended based on the similarity of their generated text content or structure information. Although this problem has been extensively studied, the challenge of how to effectively incorporate the information from the social interaction and user generated content remains largely open. We propose a model (LRCS) to recommend user’s potential friends by incorporating user’s generated content and structure features. First, network users are clustered based on the similarity of user’s interest and structural features. Users in the same cluster with the query user are considered as the candidate friends. Then, a weighted SimRank algorithm is proposed to recommend the most similar users as the friends. Experiments on two real-life datasets show the superiority of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yin, Z., Gupta, M., Weninger, T., Han, J.: A unified framework for link recommendation using random walks. In: International Conference on Advances in Social Networks Analysis and Mining (2010)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)
Parimi, R., Caragea, D.: Predicting friendship links in social networks using a topic modeling approach. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 75–86. Springer, Heidelberg (2011)
Tang, W., Zhuang, H., Tang, J.: Learning to infer social ties in large networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 381–397. Springer, Heidelberg (2011)
Tang, J., Lou, T., Kleinberg, J.: Inferring social ties across heterogenous networks. In: 5th International ACM Conference on Web Search and Data Mining (2012)
Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, X., Deng, Q., Li, Z. (2015). Friendship Link Recommendation Based on Content Structure Information. In: Dong, X., Yu, X., Li, J., Sun, Y. (eds) Web-Age Information Management. WAIM 2015. Lecture Notes in Computer Science(), vol 9098. Springer, Cham. https://doi.org/10.1007/978-3-319-21042-1_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-21042-1_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21041-4
Online ISBN: 978-3-319-21042-1
eBook Packages: Computer ScienceComputer Science (R0)