Abstract
Process Mining techniques rely on the existence of event data. However, in many cases it is far from trivial to obtain such event data. Considerable efforts may need to be spent on making IT systems record historic data at all. But even if such records are available, it may not be possible to derive an event log for the case notion one is interested in, i.e., correlating events to form process instances may be challenging. This paper proposes an approach that exploits a commonly available and versatile source of data, i.e. database redo logs. Such logs record the writing operations performed in a general-purpose database for a range of objects, which constitute a collection of events. By using the relations between objects as specified in the associated data model, it is possible to turn such events into an event log for a wide range of case types. The resulting logs can be analyzed using existing process mining techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aalst, W.M.P.: Extracting event data from databases to unleash process mining. In: vom Brocke, J., Schmiedel, T. (eds.) BPM - Driving Innovation in a Digital World. Management for Professionals, pp. 105–128. Springer International Publishing (2015)
van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.: Prom: the process mining toolkit. In: Proceedings of the BPM Demonstration Track (BPMDemos 2009), Ulm, Germany, September 8, 2009
Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business operations and processes. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 32(3), 3–9 (2009)
Engel, R., van der Aalst, W.M.P., Zapletal, M., Pichler, C., Werthner, H.: Mining inter-organizational business process models from EDI messages: a case study from the automotive sector. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 222–237. Springer, Heidelberg (2012)
Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral conformance of artifact-centric process models. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 37–49. Springer, Heidelberg (2011)
Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining of sap transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)
Lu, X.: Artifact-Centric Log Extraction and Process Discovery. Master’s thesis, Technische Universiteit Eindhoven, The Netherlands (2013). http://repository.tue.nl/761324
Mueller-Wickop, N., Schultz, M.: ERP event log preprocessing: timestamps vs. accounting logic. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 105–119. Springer, Heidelberg (2013)
Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM Systems Journal 42(3), 428–445 (2003)
Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-centric and artifact-centric processes. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 316–327. Springer, Heidelberg (2013)
Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S., Westergaard, M., Christensen, S., Jensen, K.: CPN tools for editing, simulating, and analysing coloured Petri nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003)
Roest, A.: A practitioner’s guide for process mining on ERP systems : the case of SAP order to cash. Master’s thesis, Technische Universiteit Eindhoven, The Netherlands (2012). http://repository.tue.nl/748077
Segers, I.: Investigating the Application of Process Mining for Auditing Purposes. Master’s thesis, Technische Universiteit Eindhoven, The Netherlands (2007). http://repository.tue.nl/630348
Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)
Yano, K., Nomura, Y., Kanai, T.: A practical approach to automated business process discovery. In: 2013 17th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW), pp. 53–62, September 2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
de Murillas, E.G.L., van der Aalst, W.M.P., Reijers, H.A. (2015). Process Mining on Databases: Unearthing Historical Data from Redo Logs. In: Motahari-Nezhad, H., Recker, J., Weidlich, M. (eds) Business Process Management. BPM 2016. Lecture Notes in Computer Science(), vol 9253. Springer, Cham. https://doi.org/10.1007/978-3-319-23063-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-23063-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23062-7
Online ISBN: 978-3-319-23063-4
eBook Packages: Computer ScienceComputer Science (R0)