Abstract
Motifs are small gene interaction networks that frequently occur within larger genetic regulatory networks (GRNs). However, it is unclear what evolutionary and developmental advantages motifs provide that have led to this enrichment. This study seeks to understand how motifs within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. A computational study was performed by creating Boolean intracellular networks with varying inserted motifs within a simulated epithelial field of embryonic cells. Each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Comparison of random networks to those with motifs demonstrated that: (1) Bistable switches that encode mutual inhibition simplify both the pattern and network dynamics. (2) All other motifs with feedback loops increase information complexity of the multicellular patterns while simplifying the network dynamics. (3) Negative feedback loops affect the dynamics complexity more significantly than positive feedback loops. (4) Feed forward motifs without feedback have little effect on the complexity of patterns formed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lander, A.D.: Morpheus unbound: reimagining the morphogen gradient. Cell 128(2), 245–256 (2007). http://dx.doi.org/10.1016/j.cell.2007.01.004
Lander, A.D.: Pattern, Growth, and Control. Cell 144(6), 955–969 (2011). http://dx.doi.org/10.1016/j.cell.2011.03.009
Flann, N.S., Mohamadlou, H., Podgorski, G.J.: Kolmogorov complexity of epithelial pattern formation: the role of regulatory network configuration. Biosystems 112(2), 131–138 (2013). http://dx.doi.org/10.1016/j.biosystems.2013.03.005
Davidson, E.H.: Emerging properties of animal gene regulatory networks. Nature 468(7326), 911–920 (2010). http://dx.doi.org/10.1038/nature09645
Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64–68 (2002). http://dx.doi.org/10.1038/ng881
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002). http://dx.doi.org/10.1126/science.298.5594.824
Barabasi, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004). http://dx.doi.org/10.1038/nrg1272
Ghaffarizadeh, A., Flann, N., Podgorski, G.: Multistable switches and their role in cellular differentiation networks. BMC Bioinf. 15(Suppl. 7), S7+ (2014). http://dx.doi.org/10.1186/1471-2105-15-s7-s7
Mazumdar, A., Mazumdar, M.: How one becomes many: blastoderm cellularization in Drosophila melanogaster. BioEssays : News Rev. Mol. Cell. Dev. Biol. 24(11), 1012–1022 (2002). http://dx.doi.org/10.1002/bies.10184
Goodyear, R., Richardson, G.: Pattern formation in the basilar papilla: evidence for cell rearrangement. J. Neurosci. Official J. Soc. Neurosci. 17(16), 6289–6301 (1997). http://view.ncbi.nlm.nih.gov/pubmed/9236239
Podgorski, G.J., Bansal, M., Flann, N.S.: Regular mosaic pattern development: a study of the interplay between lateral inhibition, apoptosis and differential adhesion. Theor. Biol. Med. Model. 4, 43+ (2007). http://dx.doi.org/10.1186/1742-4682-4-43
Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Prob. Inf. Transm. 1, 1–7 (1965)
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969). http://view.ncbi.nlm.nih.gov/pubmed/5803332
Eglen, S.J., Willshaw, D.J.: Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study. Development 129(23), 5399–5408 (2002). http://view.ncbi.nlm.nih.gov/pubmed/12403711
Kim, M.S., Kim, D., Kim, A., Lander, A.D., Cho, K.H.: Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster. BMC Syst. Biol. 6(1), 31+ (2012). http://dx.doi.org/10.1186/1752-0509-6-31
Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B: Biol. Sci. 280(1755), 20122863 (2013). http://dx.doi.org/10.1098/rspb.2012.2863
Lorenz, D.M., Jeng, A., Deem, M.W.: The emergence of modularity in biological systems. Phys. Life Rev. 8(2), 161–162 (2012). http://arxiv.org/abs/1204.5999
Kim, J.-R.R., Yoon, Y., Cho, K.-H.H.: Coupled feedback loops form dynamic motifs of cellular networks. Biophys. J. 94(2), 359–365 (2008). http://dx.doi.org/10.1529/biophysj.107.105106
Kalir, S., Mangan, S., Alon, U.: A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol. Syst. Biol. 1(1), msb4 100 010-E11–msb4 100 010-E16 (2005). http://dx.doi.org/10.1038/msb4100010
Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007). http://dx.doi.org/10.1038/nrg2102
Singh, H., Khan, A.A., Dinner, A.R.: Gene regulatory networks in the immune system. Trends Immunol. 35(5), 211–218 (2015). http://dx.doi.org/10.1016/j.it.2014.03.006
Levine, M., Davidson, E.H.: Gene regulatory networks for development. Proc. Nat. Acad. Sci. U.S.A. 102(14), 4936–4942 (2005). http://dx.doi.org/10.1073/pnas.0408031102
Swiers, G., Patient, R., Loose, M.: Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol. 294(2), 525–540 (2006). http://dx.doi.org/10.1016/j.ydbio.2006.02.051
Ma, H.-W., Kumar, B., Ditges, U., Gunzer, F., Buer, J., Zeng, A.-P.: An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res. 32(22), 6643–6649 (2004). http://dx.doi.org/10.1093/nar/gkh1009
Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1226010/
Galas, D.J., Nykter, M., Carter, G.W., Price, N.D., Shmulevich, I.: Biology information as set-based complexity. IEEE Trans. Inf. Theory 56(2), 667–677 (2010). http://dx.doi.org/10.1109/TIT.2009.2037046
Ignac, T., Sakhanenko, N., Galas, D.: Relations between the set-complexity and the structure of graphs and their sub-graphs. EURASIP J. Bioinf. Syst. Biol. 2012(1), 1–10 (2012). http://dx.doi.org/10.1186/1687-4153-2012-13
Carter, G.W., Rush, C.G., Uygun, F., Sakhanenko, N.A., Galas, D.J., Galitski, T.: A systems-biology approach to modular genetic complexity. Chaos: Interdisc. J. Nonlinear Sci. 20(2), 026 102+ (2010). http://dx.doi.org/10.1063/1.3455183
Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.: Shared information and program plagiarism detection. IEEE Trans. Inf. Theory 50(7), 1545–1551 (2004). http://dx.doi.org/10.1109/tit.2004.830793
Acknowledgements
Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P50GM076547. Thanks to Ilya Shmulevich for helpful discussions. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mohamadlou, H., Podgorski, G.J., Flann, N.S. (2015). Motifs Within Genetic Regulatory Networks Increase Organization During Pattern Formation. In: Lones, M., Tyrrell, A., Smith, S., Fogel, G. (eds) Information Processing in Cells and Tissues. IPCAT 2015. Lecture Notes in Computer Science(), vol 9303. Springer, Cham. https://doi.org/10.1007/978-3-319-23108-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-23108-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23107-5
Online ISBN: 978-3-319-23108-2
eBook Packages: Computer ScienceComputer Science (R0)