Skip to main content

Motifs Within Genetic Regulatory Networks Increase Organization During Pattern Formation

  • Conference paper
  • First Online:
Information Processing in Cells and Tissues (IPCAT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9303))

  • 647 Accesses

Abstract

Motifs are small gene interaction networks that frequently occur within larger genetic regulatory networks (GRNs). However, it is unclear what evolutionary and developmental advantages motifs provide that have led to this enrichment. This study seeks to understand how motifs within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. A computational study was performed by creating Boolean intracellular networks with varying inserted motifs within a simulated epithelial field of embryonic cells. Each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Comparison of random networks to those with motifs demonstrated that: (1) Bistable switches that encode mutual inhibition simplify both the pattern and network dynamics. (2) All other motifs with feedback loops increase information complexity of the multicellular patterns while simplifying the network dynamics. (3) Negative feedback loops affect the dynamics complexity more significantly than positive feedback loops. (4) Feed forward motifs without feedback have little effect on the complexity of patterns formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lander, A.D.: Morpheus unbound: reimagining the morphogen gradient. Cell 128(2), 245–256 (2007). http://dx.doi.org/10.1016/j.cell.2007.01.004

    Article  Google Scholar 

  2. Lander, A.D.: Pattern, Growth, and Control. Cell 144(6), 955–969 (2011). http://dx.doi.org/10.1016/j.cell.2011.03.009

    Article  Google Scholar 

  3. Flann, N.S., Mohamadlou, H., Podgorski, G.J.: Kolmogorov complexity of epithelial pattern formation: the role of regulatory network configuration. Biosystems 112(2), 131–138 (2013). http://dx.doi.org/10.1016/j.biosystems.2013.03.005

    Article  Google Scholar 

  4. Davidson, E.H.: Emerging properties of animal gene regulatory networks. Nature 468(7326), 911–920 (2010). http://dx.doi.org/10.1038/nature09645

    Article  Google Scholar 

  5. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64–68 (2002). http://dx.doi.org/10.1038/ng881

    Article  Google Scholar 

  6. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002). http://dx.doi.org/10.1126/science.298.5594.824

    Article  Google Scholar 

  7. Barabasi, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004). http://dx.doi.org/10.1038/nrg1272

    Article  Google Scholar 

  8. Ghaffarizadeh, A., Flann, N., Podgorski, G.: Multistable switches and their role in cellular differentiation networks. BMC Bioinf. 15(Suppl. 7), S7+ (2014). http://dx.doi.org/10.1186/1471-2105-15-s7-s7

    Article  Google Scholar 

  9. Mazumdar, A., Mazumdar, M.: How one becomes many: blastoderm cellularization in Drosophila melanogaster. BioEssays : News Rev. Mol. Cell. Dev. Biol. 24(11), 1012–1022 (2002). http://dx.doi.org/10.1002/bies.10184

    Article  Google Scholar 

  10. Goodyear, R., Richardson, G.: Pattern formation in the basilar papilla: evidence for cell rearrangement. J. Neurosci. Official J. Soc. Neurosci. 17(16), 6289–6301 (1997). http://view.ncbi.nlm.nih.gov/pubmed/9236239

    Google Scholar 

  11. Podgorski, G.J., Bansal, M., Flann, N.S.: Regular mosaic pattern development: a study of the interplay between lateral inhibition, apoptosis and differential adhesion. Theor. Biol. Med. Model. 4, 43+ (2007). http://dx.doi.org/10.1186/1742-4682-4-43

    Article  Google Scholar 

  12. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Prob. Inf. Transm. 1, 1–7 (1965)

    Google Scholar 

  13. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969). http://view.ncbi.nlm.nih.gov/pubmed/5803332

    Article  Google Scholar 

  14. Eglen, S.J., Willshaw, D.J.: Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study. Development 129(23), 5399–5408 (2002). http://view.ncbi.nlm.nih.gov/pubmed/12403711

    Article  Google Scholar 

  15. Kim, M.S., Kim, D., Kim, A., Lander, A.D., Cho, K.H.: Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster. BMC Syst. Biol. 6(1), 31+ (2012). http://dx.doi.org/10.1186/1752-0509-6-31

    Article  Google Scholar 

  16. Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B: Biol. Sci. 280(1755), 20122863 (2013). http://dx.doi.org/10.1098/rspb.2012.2863

    Article  Google Scholar 

  17. Lorenz, D.M., Jeng, A., Deem, M.W.: The emergence of modularity in biological systems. Phys. Life Rev. 8(2), 161–162 (2012). http://arxiv.org/abs/1204.5999

    Google Scholar 

  18. Kim, J.-R.R., Yoon, Y., Cho, K.-H.H.: Coupled feedback loops form dynamic motifs of cellular networks. Biophys. J. 94(2), 359–365 (2008). http://dx.doi.org/10.1529/biophysj.107.105106

    Article  Google Scholar 

  19. Kalir, S., Mangan, S., Alon, U.: A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol. Syst. Biol. 1(1), msb4 100 010-E11–msb4 100 010-E16 (2005). http://dx.doi.org/10.1038/msb4100010

    Article  Google Scholar 

  20. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007). http://dx.doi.org/10.1038/nrg2102

    Article  Google Scholar 

  21. Singh, H., Khan, A.A., Dinner, A.R.: Gene regulatory networks in the immune system. Trends Immunol. 35(5), 211–218 (2015). http://dx.doi.org/10.1016/j.it.2014.03.006

    Article  Google Scholar 

  22. Levine, M., Davidson, E.H.: Gene regulatory networks for development. Proc. Nat. Acad. Sci. U.S.A. 102(14), 4936–4942 (2005). http://dx.doi.org/10.1073/pnas.0408031102

    Article  Google Scholar 

  23. Swiers, G., Patient, R., Loose, M.: Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol. 294(2), 525–540 (2006). http://dx.doi.org/10.1016/j.ydbio.2006.02.051

    Article  Google Scholar 

  24. Ma, H.-W., Kumar, B., Ditges, U., Gunzer, F., Buer, J., Zeng, A.-P.: An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res. 32(22), 6643–6649 (2004). http://dx.doi.org/10.1093/nar/gkh1009

    Article  Google Scholar 

  25. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1226010/

    Google Scholar 

  26. Galas, D.J., Nykter, M., Carter, G.W., Price, N.D., Shmulevich, I.: Biology information as set-based complexity. IEEE Trans. Inf. Theory 56(2), 667–677 (2010). http://dx.doi.org/10.1109/TIT.2009.2037046

    Article  MathSciNet  Google Scholar 

  27. Ignac, T., Sakhanenko, N., Galas, D.: Relations between the set-complexity and the structure of graphs and their sub-graphs. EURASIP J. Bioinf. Syst. Biol. 2012(1), 1–10 (2012). http://dx.doi.org/10.1186/1687-4153-2012-13

    Article  Google Scholar 

  28. Carter, G.W., Rush, C.G., Uygun, F., Sakhanenko, N.A., Galas, D.J., Galitski, T.: A systems-biology approach to modular genetic complexity. Chaos: Interdisc. J. Nonlinear Sci. 20(2), 026 102+ (2010). http://dx.doi.org/10.1063/1.3455183

    Article  Google Scholar 

  29. Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.: Shared information and program plagiarism detection. IEEE Trans. Inf. Theory 50(7), 1545–1551 (2004). http://dx.doi.org/10.1109/tit.2004.830793

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P50GM076547. Thanks to Ilya Shmulevich for helpful discussions. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Flann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohamadlou, H., Podgorski, G.J., Flann, N.S. (2015). Motifs Within Genetic Regulatory Networks Increase Organization During Pattern Formation. In: Lones, M., Tyrrell, A., Smith, S., Fogel, G. (eds) Information Processing in Cells and Tissues. IPCAT 2015. Lecture Notes in Computer Science(), vol 9303. Springer, Cham. https://doi.org/10.1007/978-3-319-23108-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23108-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23107-5

  • Online ISBN: 978-3-319-23108-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy