Abstract
Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is a complementary diagnostic method for early detection of breast cancer. However, due to the large amount of information, DCE-MRI data can hardly be inspected without the use of a Computer Aided Diagnosis (CAD) system. Among the major issues in developing CAD for breast DCE-MRI there is the classification of segmented regions of interest according to their aggressiveness.
While there is a certain amount of evidence that dynamic information can be suitably used for lesion classification, it still remains unclear whether other kinds of features (e.g. texture-based) can add useful information. This pushes the exploration of new features coming from different research fields such as Local Binary Pattern (LBP) and its variants. In particular, in this work we propose to use LBP-TOP (Three Orthogonal Projections) for the assessment of lesion malignancy in breast DCE-MRI. Different classifiers as well as the influence of a motion correction technique have been considered. Our results indicate an improvement by using LPB-TOP in combination with a Random Forest classifier (84.6% accuracy) with respect to previous findings in literature.
Chapter PDF
Similar content being viewed by others
References
Abdolmaleki, P., Buadu, L.D., Naderimansh, H.: Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett 171, 183–191 (2001)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 2037–2041 (2006)
Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, New York (2000)
El-Kwae, E.A., Fishman, J.E., Bianchi, M.J., Pattany, P.M., Kabuka, M.R.: Detection of suspected malignant patterns in three-dimensional magnetic resonance breast images. Journal of Digital Imaging: The Official Journal of the Society for Computer Applications in Radiology 11, 83–93 (1998)
Fusco, R., Sansone, M., Petrillo, A., Sansone, C.: A multiple classifier system for classification of breast lesions using dynamic and morphological features in DCE-MRI. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR 2010, vol. 7626, pp. 684–692. Lecture Notes in Computer Science, LNCS (2012)
Fusco, R., Sansone, M., Sansone, C., Petrillo, A.: Segmentation and classification of breast lesions using dynamic and textural features in dynamic contrast enhanced-magnetic resonance imaging. In: 25th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–4. IEEE (2012)
Gilhuijs, K.G., Giger, M.L., Bick, U.: Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Medical physics 25, 1647–1654 (1998)
Glaßer, S., Niemann, U., Preim, B., Spiliopoulou, M.: Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor’s most suspect region only? In: Proceedings of CBMS 2013–26th IEEE International Symposium on Computer-Based Medical Systems, pp. 77–82. IEEE (2013)
Hayton, P., Brady, M., Tarassenko, L., Moore, N.: Analysis of dynamic MR breast images using a model of contrast enhancement. Medical image analysis 1(3), 207–224 (1997)
Kuhl, C.K., Mielcareck, P., Klaschik, S., Leutner, C., Wardelmann, E., Gieseke, J., Schild, H.H.: Dynamic breast mr imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211(1), 101–110 (1999)
Lehman, C.D., Gatsonis, C., Kuhl, C.K., Hendrick, R.E., Pisano, E.D., Hanna, L., Peacock, S., Smazal, S.F., Maki, D.D., Julian, T.B., DePeri, E.R., Bluemke, D.A., Schnall, M.D.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. The New England journal of medicine 356, 1295–1303 (2007)
Levman, J., Leung, T., Causer, P., Plewes, D., Martel, A.L.: Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines. IEEE Transactions on Medical Imaging 27, 688–696 (2008)
Marrone, S., Piantadosi, G., Fusco, R., Petrillo, A., Sansone, M., Sansone, C.: Automatic lesion detection in breast DCE-MRI. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS, vol. 8157, pp. 359–368. Springer, Heidelberg (2013)
Marrone, S., Piantadosi, G., Fusco, R., Petrillo, A., Sansone, M., Sansone, C.: A novel model-based measure for quality evaluation of image registration techniques in DCE-MRI. In: 27th International Symposium on Computer-Based Medical Systems (CBMS) 2014 IEEE, pp. 209–214. IEEE (2014)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)
Olsen, O., Gøtzsche, P.C.: Cochrane review on screening for breast cancer with mammography. The Lancet 358(9290), 1340–1342 (2001)
Rosset, A., Spadola, L., Ratib, O.: OsiriX: An open-source software for navigating in multidimensional DICOM images. Journal of Digital Imaging 17, 205–216 (2004)
Tanner, C., Khazen, M., Kessar, P., Leach, M., Hawkes, D.: Does registration improve the performance of a computer aided diagnosis system for dynamic contrast-enhanced MR mammography? In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 466–469. IEEE (2006)
Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B.W., Lee, T.Y., Mayr, N.A., Parker, G.J.M.: Others: Estimating kinetic parameters from dynamic contrast-enhanced T 1-weighted MRI of a diffusable tracer: standardized quantities and symbols. Journal of Magnetic Resonance Imaging 10(3), 223–232 (1999)
Twellmann, T., Lichte, O., Nattkemper, T.: An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE Transactions on Medical Imaging 24, 1256–1266 (2005)
Twellmann, T., Saalbach, a., Müller, C., Nattkemper, T.W., Wismüller, A.: Detection of suspicious lesions in dynamic contrast enhanced MRI data. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS2004), vol. 1, pp. 454–457 (2004)
Twellmann, T., Meyer-Baese, A., Lange, O., Foo, S., Nattkemper, T.W.: Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. Engineering Applications of Artificial Intelligence 21, 129–140 (2008)
Vomweg, T.W., Buscema, M., Kauczor, H.U., Teifke, A., Intraligi, M., Terzi, S., Heussel, C.P., Achenbach, T., Rieker, O., Mayer, D., Thelen, M.: Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Medical physics 30, 2350–2359 (2003)
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2011)
Zhao, G., Barnard, M., Pietikäinen, M.: Lipreading with local spatiotemporal descriptors. IEEE Transactions on Multimedia 11, 1254–1265 (2009)
Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 915–928 (2007)
Zheng, Y., Englander, S., Baloch, S., Zacharaki, E.I., Fan, Y., Schnall, M.D., Shen, D.: STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Medical physics 36, 3192–3204 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Piantadosi, G., Fusco, R., Petrillo, A., Sansone, M., Sansone, C. (2015). LBP-TOP for Volume Lesion Classification in Breast DCE-MRI. In: Murino, V., Puppo, E. (eds) Image Analysis and Processing — ICIAP 2015. ICIAP 2015. Lecture Notes in Computer Science(), vol 9279. Springer, Cham. https://doi.org/10.1007/978-3-319-23231-7_58
Download citation
DOI: https://doi.org/10.1007/978-3-319-23231-7_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23230-0
Online ISBN: 978-3-319-23231-7
eBook Packages: Computer ScienceComputer Science (R0)