Abstract
We address the specification and verification of spatio-temporal behaviours of complex systems, extending Signal Spatio-Temporal Logic (SSTL) with a spatial operator capable of specifying topological properties in a discrete space. The latter is modelled as a weighted graph, and provided with a boolean and a quantitative semantics. Furthermore, we define efficient monitoring algorithms for both the boolean and the quantitative semantics. These are implemented in a Java tool available online. We illustrate the expressiveness of SSTL and the effectiveness of the monitoring procedures on the formation of patterns in a Turing reaction-diffusion system.
Work partially funded by the EU-FET project QUANTICOL (nr. 600708), by the German Research Council (DFG) as part of the Cluster of Excellence on Multimodal Computing and Interaction at Saarland University and the IT MIUR project CINA. We thank Diego Latella and Ezio Bartocci for the discussions and EB for sharing the code to generate traces of the example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Due to lack of space all proofs are omitted. The interested reader may refer to [17].
- 2.
Time bounds can be restricted to rational numbers, hence there always exists an \(h>0\) satisfying all assumptions.
- 3.
The assumption of Lipschitz continuity holds whenever the primary signal is the solution of an ODE with a locally Lipschitz vector field, as usually is the case.
- 4.
jSSTL is available on-line at https://bitbucket.org/LauraNenzi/jsstl.
- 5.
- 6.
For simplicity, here we fix \(\delta =1\). Note that using a non-uniform mesh the weights of the edges of the resulting graph will not be uniform.
References
Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Netherlands (2007)
Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)
Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)
Bortolussi, L., Nenzi, L.: Specifying and monitoring properties of stochastic spatio-temporal systems in signal temporal logic. In: Proceedings of VALUETOOLS (2014)
Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014)
Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model-checking of vehicular movement in public transport systems. (Submitted, 2015)
Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification for collective adaptive systems: spatial model-checking of vehicle location data. In: Proceedings of SASOW (2014)
Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013)
Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)
Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theore. Comput. Sci. 410(42), 4262–4291 (2009)
Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999)
Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of CDC (2014)
Grosu, R., Bartocci, E., Corradini, F., Entcheva, E., Smolka, S.A., Wasilewska, A.: Learning and detecting emergent behavior in networks of cardiac myocytes. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 229–243. Springer, Heidelberg (2008)
Haghighi, I., Jones, A., Kong, J.Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of HSCC (2015)
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)
Mari, L., Bertuzzo, E., Righetto, L., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J. Roy. Soc. Interface 9(67), 376–388 (2012)
Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. extended version. Technical report 06, QUANTICOL (2015). http://goo.gl/fWx88i
Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M. (2015). Qualitative and Quantitative Monitoring of Spatio-Temporal Properties. In: Bartocci, E., Majumdar, R. (eds) Runtime Verification. Lecture Notes in Computer Science(), vol 9333. Springer, Cham. https://doi.org/10.1007/978-3-319-23820-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-23820-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23819-7
Online ISBN: 978-3-319-23820-3
eBook Packages: Computer ScienceComputer Science (R0)