Abstract
We present a method for efficient detection of deformed 3D objects in 3D point clouds that can handle large amounts of clutter, noise, and occlusion. The method generalizes well to different object classes and does not require an explicit deformation model. Instead, deformations are learned based on a few registered deformed object instances. The approach builds upon graph matching to find correspondences between scene and model points. The robustness is increased through a parametrization where each graph vertex represents a full rigid transformation. We speed up the matching through greedy multi-step graph pruning and a constant-time feature matching. Quantitative and qualitative experiments demonstrate that our method is robust, efficient, able to detect rigid and non-rigid objects and exceeds state of the art.
Similar content being viewed by others
References
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA (2009)
Wahl, E., Hillenbrand, G., Hirzinger, G.: Surflet-pair-relation histograms: a statistical 3d-shape representation for rapid classification. In: 3DIM (2003)
Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: CVPR (2010)
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)
Myronenko, A., Song, X.: Point set registration: coherent point drift. PAMI 32(12), 2262–2275 (2010)
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU 89(2), 114–141 (2003)
Anguelov, D., Srinivasan, P., Pang, H.C., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. NIPS. 17, 33–40 (2004)
Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm for recognizing 3-d object shapes from range data. In: ICCV, pp. 1126–1133. Citeseer (2003)
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(03), 265–298 (2004)
Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. PAMI 33(12), 2383–2395 (2011)
Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR (2005)
Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)
Chertok, M., Keller, Y.: Efficient high order matching. PAMI 32(12), 2205–2215 (2010)
Leordeanu, M., Zanfir, A., Sminchisescu, C.: Semi-supervised learning and optimization for hypergraph matching. In: ICCV, pp. 2274–2281. IEEE (2011)
Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks. In: CVPR, pp. 1633–1640. IEEE (2011)
Passalis, G., Kakadiaris, I.A., Theoharis, T.: Intraclass retrieval of nonrigid 3D objects: application to face recognition. PAMI 29(2), 218–229 (2007)
Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of geometric distances. Graph. Models 71(1), 22–31 (2009)
Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient response maps for real-time detection of textureless objects. PAMI 34(5), 876–888 (2012)
Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings 21st Annual Conference on Computer Graphics and Interactive Techniques, p. 318. ACM (1994)
Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: ACM Siggraph Computer Graphics, vol. 20, pp. 151–160. ACM (1986)
Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic correspondence for 3D modeling: an extensive review. Int. J. Shape Model. 11(2), 253 (2005)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. PAMI 21(5), 433–449 (1999)
Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. PAMI 28(10), 1584–1601 (2006)
Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vision 89(2–3), 348–361 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Drost, B., Ilic, S. (2015). Graph-Based Deformable 3D Object Matching. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-24947-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24946-9
Online ISBN: 978-3-319-24947-6
eBook Packages: Computer ScienceComputer Science (R0)