Skip to main content

On the Feasibility of Side-Channel Attacks in a Virtualized Environment

  • Conference paper
  • First Online:
E-Business and Telecommunications (ICETE 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 554))

Included in the following conference series:

  • 994 Accesses

Abstract

The isolation among physically co-located virtual machines is an important prerequisite for ensuring the security in a virtualized environment (VE). The VE should prevent from exploitation of side-channels stemming from the usage of shared resources, being hardware or software. However, despite the presumed secure logical isolation, a possible information leakage beyond the boundaries of a virtual machine due to side-channel exploits is a key concern in the VE. Such exploits have been demonstrated in the academic world during the last years. This paper takes into consideration the side-channel attacks threat, and points out that the feasibility of a SCA strongly depends on the specific context of the execution environment. The paper proposes a framework for feasibility assessment of SCAs using cache-based exploits as an example scenario. Furthermore, we provide a proof of concept to show how the feasibility of cache-based SCAs can be assessed using the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)

    Google Scholar 

  2. Amazon Web Services: Amazon Virtual Private Cloud User Guide-Dedicated Instances (2014). http://awsdocs.s3.amazonaws.com/VPC/latest/vpc-ug.pdf

  3. Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors-a survey. Proc. IEEE 94(2), 357–369 (2006)

    Article  Google Scholar 

  4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Carlier, V., Chabanne, H., Dottax, E., Pelletier, H.: Electromagnetic side channels of an FPGA implementation of AES. IACR Cryptology ePrint Archive, p. 145 (2004)

    Google Scholar 

  6. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Department of Defense: Trusted Computer System Evaluation Criteria. Technical report DoD 5200.28-STD, National Computer Security Center, Ft. Meade, MD 20755, also known as the “Orange Book”, December 1985

    Google Scholar 

  8. Figueiredo, R., Dinda, P.A., Fortes, J.: Guest editors’ introduction: resource virtualization renaissance. Computer 38(5), 28–31 (2005)

    Article  Google Scholar 

  9. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic cryptanalysis. Cryptology ePrint Archive, Report 2013/857 (2013). http://eprint.iacr.org/

  10. Hlavacs, H., Treutner, T., Gelas, J.P., Lefevre, L., Orgerie, A.C.: Energy consumption side-channel attack at virtual machines in a cloud. In: International Conference on Cloud and Green Computing (CGC 2011) (2011)

    Google Scholar 

  11. Intel Corporation: Secure the enterprise with Intel AES-NI. http://www.intel.com/content/www/us/en/enterprise-security/enterprise-security-aes-ni-white-paper.html (2010). Last Accessed on 22 April 2014

  12. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection against cache-based side channel attacks in the cloud. In: USENIX Security Symposium, p. 11. USENIX Association (2012)

    Google Scholar 

  13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  14. Li, P., Gao, D., Reiter, M.K.: Mitigating access-driven timing channels in clouds using StopWatch. In: DSN, pp. 1–12. IEEE (2013)

    Google Scholar 

  15. Marty, M., Hill, M.: Virtual hierarchies to support server consolidation. SIGARCH Comput. Archit. News 35(2), 46–56 (2007)

    Article  Google Scholar 

  16. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Technical report 800–145, National Institute of Standards and Technology (NIST), September 2009

    Google Scholar 

  17. Messerges, T., Dabbish, E., Sloan, R.: Investigations of power analysis attacks on smartcards. In: USENIX WOST, p. 17. USENIX Association (1999)

    Google Scholar 

  18. Mowery, K., Keelveedhi, S., Shacham, H.: Are AES x86 cache timing attacks still feasible? In: CCSW, pp. 19–24. ACM (2012)

    Google Scholar 

  19. Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K.: Performance Evaluation of Virtualization Technologies for Server Consolidation. Technical report HPL-2007-59, HP Laboratories Palo Alto (2007)

    Google Scholar 

  20. Pearce, M., Zeadally, S., Hunt, R.: Virtualization: issues, security threats, and solutions. ACM Comput. Surv. 45(2), 17:1–17:39 (2013)

    Article  Google Scholar 

  21. Percival, C.: Cache missing for fun and profit. In: The Technical BSC Conference (BSDCan) (2005)

    Google Scholar 

  22. Popek, G., Goldberg, R.: Formal requirements for virtualizable third generation architectures. Commun. ACM 17(7), 412–421 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ratanpal, G.B., Williams, R., Blalock, T.: An on-chip signal suppression countermeasure to power analysis attacks. Dependable Secure Comput. 1(3), 179–189 (2004)

    Article  Google Scholar 

  24. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds. In: CCS, pp. 199–212. ACM (2009)

    Google Scholar 

  25. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)

    Google Scholar 

  26. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks on SSH. In: USENIX Security Symposium, p. 25. USENIX Association (2001)

    Google Scholar 

  27. Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazières, D.: Eliminating cache-based timing attacks with instruction-based scheduling. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 718–735. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Tiri, K., Hwang, D., Hodjat, A., Lai, B., Yang, S., Schaumont, P., Verbauwhede, I.: A side-channel leakage free coprocessor IC in 0.18 \(\mu \)m CMOS for embedded AES-based cryptographic and biometric processing. In: Design Automation Conference, pp. 222–227, June 2005

    Google Scholar 

  29. Uddin, M., Rahman, A.A.: Server consolidation: an approach to make data centers energy efficient and green. Int. J. Eng. Sci. Res. 1 (2010)

    Google Scholar 

  30. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-speed covert channel attacks in the cloud. In: USENIX Security Symposium, p. 9. USENIX Association (2012)

    Google Scholar 

  31. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An exploration of L2 cache covert channels in virtualized environments. In: CCSW, pp. 29–40. ACM (2011)

    Google Scholar 

  32. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-channel attack. IACR Cryptology ePrint Archive (2013)

    Google Scholar 

  33. Zhang, Y., Juels, A., Reiter, M., Ristenpart, T.: Cross-VM side channels and their use to extract private keys. In: CCS, pp. 305–316. ACM (2012)

    Google Scholar 

  34. Zhou, Y., DengGuo, F.: Side-channel attacks: ten years after its publication and the impacts on cryptographic module security testing. Cryptology ePrint Archive, Report 2005/388 (2005)

    Google Scholar 

Download references

Acknowledgements

Research supported by TU Darmstadt’s project LOEWE- CASED and the Deutsche Forschungsgemeinschaft Graduiertenkolleg 1362 - DFG GRK 1362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvetoslava Vateva-Gurova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vateva-Gurova, T., Luna, J., Pellegrino, G., Suri, N. (2015). On the Feasibility of Side-Channel Attacks in a Virtualized Environment. In: Obaidat, M., Holzinger, A., Filipe, J. (eds) E-Business and Telecommunications. ICETE 2014. Communications in Computer and Information Science, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-319-25915-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25915-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25914-7

  • Online ISBN: 978-3-319-25915-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy