Abstract
This paper deals with novel approach for hybridization of two scientific techniques: the evolutionary computational techniques and deterministic chaos. The Particle Swarm Optimization algorithm is enhanced with two pseudo-random number generators based on chaotic systems. The chaotic pseudo-random number generators (CPRNGs) are used to guide the particles movement through multiplying the accelerating constants. Different CPRNGs are used simultaneously in order to improve the performance of the algorithm. The IEEE CEC’13 benchmark suite is used to test the performance of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)
Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, pp. 69–73, Anchorage Alaska (1998)
Nickabadi, M., Ebadzadeh, M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011). ISSN 1568-4946
Eberhart, R., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, Los Altos (2001)
Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)
Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math Appl. 60(4), 1088–1104 (2010). ISSn 0898-1221
Alatas, B., Akin, E., Ozer, B.A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons Fractals 40(4), 1715–1734 (2009). ISSN 0960-0779
Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I.: Designing PID controller for DC motor system by means of enhanced PSO algorithm with discrete chaotic Lozi map. In: Proceedings of the 26th European Conference on Modelling and Simulation, ECMS 2012, pp. 405–409 (2012). ISBN 978-0-9564944-4-3
Araujo, E., Coelho, L.: Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Appl. Soft Comput. 8(4), 1354–1364 (2008)
Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I.: Particle swarm optimization algorithm driven by multichaotic number generator. Soft. Comput. 18(4), 631–639 (2014)
Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)
Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernández-DÃaz, A.G.: Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Technical report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore (2013)
Acknowledgements
This work was supported by Grant Agency of the Czech Republic – GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014). Also by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Project no. IGA/Ceb-iaTech/2016/007.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Pluhacek, M., Senkerik, R., Viktorin, A., Zelinka, I. (2016). Multi-chaotic Approach for Particle Acceleration in PSO. In: Blesa, M., et al. Hybrid Metaheuristics. HM 2016. Lecture Notes in Computer Science(), vol 9668. Springer, Cham. https://doi.org/10.1007/978-3-319-39636-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-39636-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39635-4
Online ISBN: 978-3-319-39636-1
eBook Packages: Computer ScienceComputer Science (R0)