Abstract
The understanding of the mechanisms of information processing in the brain would yield practical impact on innovations such as brain-computer interfaces. Spatio-temporal patterns of spikes (or action potentials) produced by groups of neurons have been hypothesized to play an important role in cortical communication [1]. Due to modern advances in recording techniques at millisecond resolution, an empirical test of the spatio-temporal pattern hypothesis is now becoming possible in principle. However, existing methods for such a test are limited to a small number of parallel spike recordings. We propose a new method that is based on Formal Concept Analysis (FCA, [11]) to carry out this intensive search. We show that evaluating conceptual stability [18] is an effective way of separating background noise from interesting patterns, as assessed by precision and recall rates on ground truth data. Because of the scaling behavior of stability evaluation, our approach is only feasible on medium-sized data sets consisting of a few dozens of neurons recorded simultaneously for some seconds. We would therefore like to encourage investigations on how to improve this scaling, to facilitate research in this important area of computational neuroscience.
A. Yegenoglu and P. Quaglio—Equal contribution; S. Grün and D. Endres—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex, 1st edn. Cambridge University Press, Cambridge (1991)
Andrews, S.: In close, a fast algorithm for computing formal concepts. In: Seventeenth International Conference on Conceptual Structures (2009)
Babin, M.A., Kuznetsov, S.O.: Approximating concept stability. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 7–15. Springer, Heidelberg (2012)
Berger, D., Borgelt, C., Louis, S., Morrison, A., Grün, S.: Efficient identification of assembly neurons withinmassively parallel spike trains. Comput. Intell. Neurosci. 2010, 1–18 (2010). doi:10.1155/2010/439648. Aricle ID 439648
Bienenstock, E.: A model of neocortex. Netw. Comput. Neural Syst. 6(2), 179–224 (1995)
Borgelt, C.: Frequent item set mining. In: Wiley Interdisciplinary Reviews (WIREs): Data Mining and Knowledge Discovery, vol. 2, pp. 437–456. Wiley, Chichester (2012). doi:10.1002/widm.1074
Diesmann, M., Gewaltig, M.-O., Aertsen, A.: Characterization of synfire activity by propagating ‘pulse packets’. In: Bower, J.M. (ed.) Computational Neuroscience: Trends in Research, pp. 59–64. Academic Press, San Diego (1996)
Diesmann, M., Gewaltig, M.-O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)
Endres, D., Adam, R., Giese, M.A., Noppeney, U.: Understanding the semantic structure of human fMRI brain recordings with formal concept analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 96–111. Springer, Heidelberg (2012)
Endres, D.M., Földiák, P., Priss, U.: An application of formal concept analysis to semantic neural decoding. Ann. Math. Artif. Intell. 57(3–4), 233–248 (2009)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Gerstein, G.L., Williams, E.R., Diesmann, M., Grün, S., Trengove, C.: Detecting synfire chains in parallel spike data. J. Neurosci. Methods 206(1), 54–64 (2012)
Grün, S.: Data-driven significance estimation of precise spike correlation. J. Neurophysiol. 101(3), 1126–1140 (2009)
Grün, S., Abeles, M., Diesmann, M.: Impact of higher-order correlations on coincidence distributions of massively parallel data. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds.) Dynamic Brain - from Neural Spikes to Behaviors. LNCS, vol. 5286, pp. 96–114. Springer, Heidelberg (2008)
Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18, 245–282 (2006)
Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). Accessed 25 Jan 2016
Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009)
Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)
Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theoret. Artif. Intell. 14, 189–216 (2002)
Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures - Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, August 2000
Louis, S., Gerstein, G.L., Grün, S., Diesmann, M.: Surrogate spike train generation through dithering in operational time. Front. Comput. Neurosci. 4, 127 (2010)
Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., Buzsaki, G.: Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19(21), 9497–9507 (1999)
Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)
Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Hamutal, S., Abeles, M.: Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79(6), 2857–2874 (1998)
Riehle, A., Wirtssohn, S., Grün, S., Brochier, T.: Mapping the spatio-temporal structure of motor cortical lfp and spiking activities during reach-to-grasp movements. Front. Neural Circ. 7, 48 (2013). doi:10.3389/fncir.2013.00048
Roth, C., Obiedkov, S.A., Kourie, D.G.: On succinct representation of knowledge community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19(2), 383–404 (2008)
Schrader, S., Grün, S., Diesmann, M., Gerstein, G.: Detecting synfire chain activity using massively parallel spike train recording. J. Neurophysiol. 100, 2165–2176 (2008)
Schwarz, D.A., Lebedev, M.A., Hanson, T.L., Dimitrov, D.F., Lehew, G., Meloy, J., Rajangam, S., Subramanian, V., Ifft, P.J., Li, Z., Ramakrishnan, A., Tate, A., Zhuang, K.Z., Nicolelis, M.A.L.: Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670–676 (2014)
Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., Grün, S.: Statistical evaluation of synchronous spike patterns extracted by frequent item set mining. Front. Comput. Neurosci. 7, 132 (2013)
Acknowledgments
This work was partly supported by Helmholtz Portfolio Supercomputing and Modeling for the Human Brain (SMHB), Human Brain Project (HBP, EU Grant 604102), and DFG SPP Priority Program 1665 (GR 1753/4-1). DE acknowledges support from the DFG under IRTG 1901 ‘The Brain in Action’.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Yegenoglu, A., Quaglio, P., Torre, E., Grün, S., Endres, D. (2016). Exploring the Usefulness of Formal Concept Analysis for Robust Detection of Spatio-temporal Spike Patterns in Massively Parallel Spike Trains. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds) Graph-Based Representation and Reasoning. ICCS 2016. Lecture Notes in Computer Science(), vol 9717. Springer, Cham. https://doi.org/10.1007/978-3-319-40985-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-40985-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40984-9
Online ISBN: 978-3-319-40985-6
eBook Packages: Computer ScienceComputer Science (R0)