Abstract
In this paper an efficient Artificial Neural Networks (ANN) classification method based on LANDSAT satellite data is proposed, studying the Cervaro river basin area (Foggia, Italy). LANDSAT imagery acquisition dates of 1984, 2003, 2009 and 2011 were selected to produce Land Use/Land Cover (LULC) maps to cover a time trend of 28 years. Land cover categories were chosen with the aim of characterizing land use according to the level of surface imperviousness. Nine synthetic bands from the PC, Tasseled Cap (TC), Brightness Temperature (BT) and vegetation indices (Leaf area Index LAI and the Modified Soil Adjusted Vegetation Index MSAVI) were identified as the most effective for the classification procedure. The advantages in using the ANN approach were confirmed without requiring a priori knowledge on the distribution model of input data. The results quantify land cover change patterns in the river basin area under study and demonstrate the potential of multitemporal LANDSAT data to provide an accurate and cost effective means to map and analyze land cover changes over time that can be used as input for subsequent hydrological and planning analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Naik, P.K., Tambe, J.A., Dehury, B.N., Tiwari, A.N.: Impact of urbanization on the groundwater regime in a fast growing city in central India. Environ. Monit. Assess. 146, 339–373 (2008)
Sharma, R., Joshi, P.: Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs. J. Indian Soc. Remote Sens. 41, 641–650 (2013)
Park, S., Hepcan, Ç.C., Hepcan, Ş., Cook, E.A.: Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey. Environ. Monit. Assess. 186, 6301–6318 (2014)
Sallustio, L., Munafò, M., Riitano, N., Lasserre, B., Fattorini, L., Marchetti, M.: Integration of land use and land cover inventories for landscape management and planning in Italy. Environ. Monit. Assess. 188, 1–20 (2016)
Gioia, A., Manfreda, S., Iacobellis, V., Fiorentino, M.: Performance of a theoretical model for the description of water balance and runoff dynamics in Southern Italy. J. Hydrol. Eng. 19(6), 1113–1123 (2013)
Manfreda, S., Samela, C., Gioia, A., Consoli, G.G., Iacobellis, V., Giuzio, L., Cantisani, A., Sole, A.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards 79(2), 735–754 (2015)
Iacobellis, V., Castorani, A., Di Santo, A.R., Gioia, A.: Rationale for flood prediction in karst endorheic areas. J. Arid Environ. 112, 98–108 (2015)
Iacobellis, V., Claps, P., Fiorentino, M.: Climatic control on the variability of flood distribution. Hydrol. Earth Syst. Sci. Discuss. 6(2), 229–238 (2002)
Yousefi, S., Khatami, R., Mountrakis, G., Mirzaee, S., Pourghasemi, H.R., Tazeh, M.: Accuracy assessment of land cover/land use classifiers in dry and humid areas of Iran. Environ. Monit. Assess. 187, 1–10 (2015)
Lasaponara, R., Lanorte, A.: Satellite time-series analysis. Int. J. Remote Sens. 33(15), 4649–4652 (2012)
Lasaponara, R.: Geospatial analysis from space: advanced approaches for data processing, information extraction and interpretation. Int. J. Appl. Earth Obs. Geoinf. 20, 1–3 (2013)
Zhou, W.: Verification of the nonparametric characteristics of backpropagation neural networks for image classification. IEEE Trans. Geosci. Remote Sens. 37, 771–779 (1999)
Aitkenhead, M., Aalders, I.: Classification of landsat thematic mapper imagery for land cover using neural networks. Int. J. Remote Sens. 29, 2075–2084 (2008)
Tarantino, E., Novelli, A., Aquilino, M., Figorito, B., Fratino, U.: Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT Satellite Imagery over an ephemeral river area. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 6(4), 83–102 (2015)
Sehgal, S.: Remotely sensed LANDSAT image classification using neural network approaches. Int. J. Eng. Res. Appl. 2, 43–46 (2012)
Xu, H.: Extraction of urban built-up land features from Landsat imagery using a thematic oriented index combination technique. Photogram. Eng. Remote Sens. 73, 1381–1391 (2007)
Patel, N., Mukherjee, R.: Extraction of impervious features from spectral indices using artificial neural network. Arab. J. Geosci. 8, 3729–3741 (2015)
Erbek, F.S., Özkan, C., Taberner, M.: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int. J. Remote Sens. 25, 1733–1748 (2004)
Li, F., Zheng, J., Wang, H., Luo, J., Zhao, Y., Zhao, R.: Mapping grazing intensity using remote sensing in the Xilingol steppe region, Inner Mongolia. China Remote Sens. Lett. 7, 328–337 (2016)
Roy, D.P., Ju, J., Kline, K., Scaramuzza, P.L., Kovalskyy, V., Hansen, M., Loveland, T.R., Vermote, E., Zhang, C.: Web-Enabled Landsat Data (WELD): landsat ETM + composited mosaics of the conterminous United States. Remote Sens. Environ. 114, 35–49 (2010)
Chander, G., Markham, B.: Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans. Geosci. Remote Sens. 41, 2674–2677 (2003)
Gao, F., Anderson, M.C., Kustas, W.P., Houborg, R.: Retrieving leaf area index from landsat using MODIS LAI products and field measurements. IEEE Geosci. Remote Sens. Lett. 11, 773–777 (2014)
Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. In: SPIE Remote Sensing, pp. 92392B-92392B-92311. International Society for Optics and Photonics (2014)
Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space–time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 187, 1–15 (2015)
Tarantino, E., Novelli, A., Laterza, M., Gioia, A.: Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index. In: Third International Conference on Remote Sensing and Geoinformation of the Environment, p. 95351N-95351N-95358. International Society for Optics and Photonics (2015)
De Jong, S.M.: Derivation of vegetative variables from a Landsat TM image for modelling soil erosion. Earth Surf. Proc. Land. 19, 165–178 (1994)
Qi, J., Chehbouni, A., Huete, A., Kerr, Y., Sorooshian, S.: A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994)
Zhang, C., Pan, Z., Dong, H., He, F., Hu, X.: Remote estimation of leaf water content using spectral index derived from hyperspectral data. In: First International Conference on Information Science and Electronic Technology (ISET 2015). Atlantis Press (2015)
Crist, E.P., Laurin, R., Cicone, R.C.: Vegetation and soils information contained in transformed Thematic Mapper data. In: Proceedings of IGARSS 1986 Symposium, pp. 1465–1470. European Space Agency Publications Division Paris (1986)
Canty, M.J.: Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python. CRC Press, Boca Raton (2014)
Muthulakshmi, A., Natesan, U., Ferrer, V.A., Deepthi, K., Venugopalan, V., Narasimhan, S.: A novel technique to monitor thermal discharges using thermal infrared imaging. Environ. Sci. Process. Impacts 15, 1729–1734 (2013)
Ozelkan, E., Bagis, S., Ozelkan, E.C., Ustundag, B.B., Ormeci, C.: Land surface temperature retrieval for climate analysis and association with climate data. Eur. J. Remote Sens. 47, 655–669 (2014)
Tarantino, E.: Monitoring spatial and temporal distribution of sea surface temperature with TIR sensor data. Ital. J. Remote Sens. 44, 97–107 (2012)
Labbi, A., Mokhnache, A.: Derivation of split-window algorithm to retrieve land surface temperature from MSG-1 thermal infrared data. Eur. J. Remote Sens. 48, 719–742 (2015)
Novelli, A., Tarantino, E.: The contribution of Landsat 8 TIRS sensor data to the identification of plastic covered vineyards, p. 95351E-95351E-95359 (2015)
Novelli, A., Tarantino, E.: Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens. Lett. 6, 933–941 (2015)
Bruzzone, L., Roli, F., Serpico, S.B.: An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 33, 1318–1321 (1995)
Ingram, J.C., Dawson, T.P., Whittaker, R.J.: Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sens. Environ. 94, 491–507 (2005)
Jensen, J., Qiu, F., Ji, M.: Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data. Int. J. Remote Sens. 20, 2805–2822 (1999)
Haykin, S.: Neural Network-a Comprehensive Foundation; a Computational Approach to Learning and Machine Intelligence. Macmillan, New York (1994)
Lloyd, R.: Spatial Cognition: Geographic Environments. Springer, Netherlands (1997)
Demuth, H., Beale, M., Hagan, M.: Neural network toolbox™ 6 user’s guide (2008)
Dorofki, M., Elshafie, A.H., Jaafar, O., Karim, O.A., Mastura, S.: Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. Int. Proc. Chem. Biol. Environ. Eng. 33, 39–44 (2012)
Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6, 525–533 (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F. (2016). Improving the ANN Classification Accuracy of Landsat Data Through Spectral Indices and Linear Transformations (PCA and TCT) Aimed at LU/LC Monitoring of a River Basin. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9787. Springer, Cham. https://doi.org/10.1007/978-3-319-42108-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-42108-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42107-0
Online ISBN: 978-3-319-42108-7
eBook Packages: Computer ScienceComputer Science (R0)